[1] Morales et al. (2012): The Ciao CLP(FD) Library. A Modular CLP Extension for Prolog. In, N. Angelopoulos and R. Bagnara, editors, Proceedings of CICLOPS 2012, Budapest, Hungary, September 4, 2012   
Tikovsky, J. R. (2012): Integration eines Finite-Domain-Constraint-Solvers in KiCS2,  Institut für Informatik, Christian-Albrechts-Universität zu Kiel, August 2012
Carlsson, M., Ottosson, G. and Carlson, B. (1997). An Open-Ended Finite Domain Constraint Solver, In H. Glaser, P. Hartel, and H. Kuchen, editors, Programming Languages: Implementations, Logics, and Programming, volume 1292 of LNCS, pages 191–206. Springer-Verlag, 1997
Hanák, D., Szeredi, T. and Szeredi, P. (2004): FDBG, the CLP(FD) Debugger Library of SICstus Prolog. In B. Demoen and V. Lifschitz, editors, Proc. of ICLP’04, Poster. LNCS 3132, 2004
Triska, M. (2012): The Finite Domain Constraint Solver of SWI-Prolog,
In Schrijvers, T. and Thiemann, P, editors, Proceedings of FLOPS'12, 307-316, LNCS 7294, 2012‎
[6] Zhou, NF. (2010): What I Have Learned From All These Solver Competitions, In U. Geske and A. Wolf, editors, Proceedings of the 23rd Workshop on (Constraint) Logic Programming 2009, 17 – 34, Potsdam, 2010‎
[7] Schimpf, J. and Shen. K. (2011): ECLiPSe - from LP to CLP, In Theory and Practice of Logic Programming / Volume 12 / Special Issue on Prolog Systems 1-2, 127 - 156. Copyright Cambridge University Press 2011, Published online 12 September 2011
[8] Le Berre, D. (2009): Understanding and using SAT solvers, A practitioner perspective, Summer School 2009: Verification Technology, Systems & Applications, Nancy, October 12-16, 2009‎
[9] Howe, J.M. and King, A. (2010): A Pearl on SAT Solving in Prolog, In M. Blume, N. Kobayashi, and G. Vidal, editors, Proceedings
FLOPS'10, 165-174, LNCS 6009. Springer, 2010.‎
[10] Creignou, N. and Vollmer, H. (2008): Boolean constraint satisfaction problems : When does post’s lattice help ? In Complexity of Constraints — An Overview of Current Research Themes [Result of a Dagstuhl Seminar], volume 5250 of Lecture Notes in Computer Science, pages 3-37. Springer, 2008.
[11] Negri, S. (2003): Contraction-free sequent calculi for geometric theories, with an ap-plication to Barr's theorem, Archive for Mathematical Logic, vol. 42, pp. 389-401, 2003