
Jekejeke Runtime Benchmark
Version 1.0.6, May 4th, 2015

XLOG Technologies GmbH

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 2 of 63

Jekejeke Prolog

Runtime Library 1.0.6
Benchmark Core Results

Author: XLOG Technologies GmbH
Jan Burse
Freischützgasse 14
8004 Zürich
Switzerland

Date: May 4th, 2015
Version: 0.21

Participants: None

Warranty & Liability
To the extent permitted by applicable law and unless explicitly otherwise agreed upon, XLOG
Technologies GmbH makes no warranties regarding the provided information. XLOG Tech-
nologies GmbH assumes no liability that any problems might be solved with the information
provided by XLOG Technologies GmbH.

Rights & License
All industrial property rights regarding the information - copyright and patent rights in particu-
lar - are the sole property of XLOG Technologies GmbH. If the company was not the origina-
tor of some excerpts, XLOG Technologies GmbH has at least obtained the right to repro-
duce, change and translate the information.

Reproduction is restricted to the whole unaltered document. Reproduction of the information
is only allowed for non-commercial uses. Small excerpts can be used if properly cited. Cita-
tions must at least include the document title, the product family, the product version, the
company, the date and the page. Example:

… Defined predicates with arity>0, both static and dynamic, are indexed on
the functor of their first argument [1, p.17] ...

[1] Language Reference, Jekejeke Prolog 0.8.1, XLOG Technologies GmbH,
Switzerland, February 22nd, 2010

Trademarks
Jekejeke is a registered trademark of XLOG Technologies GmbH.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 3 of 63

Table of Contents
1 Introduction ..5

2 Study Object ..6
2.1 Memory Organization ..6
2.2 Resolution Step ...8
2.3 Test Scope ..10

3 Test Programs ...11
3.1 nrev Test Program...11
3.2 crypt Test Program..12
3.3 deriv Test Program..13
3.4 poly Test Program ...14
3.5 qsort Test Program..15
3.6 tictac Test Program ...16
3.7 queens Test Program ..17
3.8 query Test Program...18
3.9 mtak Test Program..19
3.10 perfect Test Program..20
3.11 calc Test Program ..21

4 Available Optimizations..22
4.1 Choice Point Elimination..22
4.2 Clause Indexing...25
4.3 Body Variable Elimination..27
4.4 Stack Frame Elimination..30
4.5 Head Variable Elimination ...33

5 Strategies Comparison...37
5.1 Test Results ..38
5.2 Discussion Choice Point Elimination..40
5.3 Discussion Clause Indexing...41
5.4 Discussion Body Variable Elimination..42
5.5 Discussion Stack Frame Elimination..43
5.6 Discussion Head Variable Elimination ...44

6 Interpreter Comparison ..45
6.1 Test Results ..46
6.2 Discussion ECLiPSe Prolog...48
6.3 Discussion SWI Prolog ..49
6.4 Discussion GNU Prolog ...50
6.5 Discussion Ciao Prolog..51
6.6 Discussion B-Prolog ..52

7 Appendix Harness Listings...53
7.1 Common Files ...53
7.2 Jekejeke Prolog Harness...55
7.3 ECLiPSe Prolog Harness ..56
7.4 SWI Prolog Harness ..57
7.5 GNU Prolog Harness...58
7.6 Ciao Prolog Harness ...60
7.7 B-Prolog Harness ..61

Pictures ..62

Tables ..62

References...63

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 4 of 63

Change History
Jan Burse, July 2nd, 2010, 0.1:
 Initial version with benchmarks, harness and raw data.
Jan Burse, July 20th, 2010, 0.2:
 Clause indexing section removed and discussions completed.
Jan Burse, January 2nd, 2011, 0.3:
 Updated to results of release 0.8.7.
Jan Burse, Mai 7th, 2011, 0.4:
 Updated to results of release 0.8.9.
Jan Burse, August 8th, 2011, 0.5:
 Updated to results of release 0.9.0.
Jan Burse, August 10th, 2011, 0.6:
 Added new benchmark cases perfect number and DCG calculator.
Jan Burse, August 13th, 2011, 0.7:
 Removed benchmark case primes and paths explained.
Jan Burse, August 18th, 2011, 0.8:
 Stack frame elimination and head variable elimination updated.
Jan Burse, August 22th, 2011, 0.9:
 Clause indexing comparison and Ciao Prolog system comparison introduced.
Jan Burse, September 20th, 2011, 0.10:
 New benchmark Tic-tac-toe and intermediate code changes.
Jan Burse, September 27th, 2011, 0.11:
 Updated to JDK 1.7 measurements and recent improvements.
Jan Burse, November 21th, 2011, 0.12:
 Updated to release 0.9.2 improvements.
Jan Burse, April 9th, 2012, 0.13:
 Updated to release 0.9.3 improvements.
Jan Burse, July 18th, 2012, 0.14:
 Updated to release 0.9.4 improvements.
Jan Burse, October 26th, 2012, 0.15:
 Updated to release 0.9.6 improvements.
Jan Burse, March 1st, 2013, 0.16:
 Updated to release 0.9.8 changes.
Jan Burse, August 22th, 2013, 0.17:
 ECLiPSe Prolog introduced and SICStus Prolog removed.
Jan Burse, December 12th, 2013, 0.18:
 Updated to SWI-Prolog 7 non-traditional.
Jan Burse, April 6th, 2014, 0.19:
 Updated to release 1.0.1 regression and use of ensure_loaded/1.
Jan Burse, June 12th, 2014, 0.20:
 New uses based benchmark file organization.
Jan Burse, Mai 4th, 2015, 0.21:
 Updated to release 1.0.6 changes and Prolog sources moved out.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 5 of 63

1 Introduction
This document describes some benchmarking results for the Jekejeke Prolog system.

 Study Object: In this section we give a brief introduction into the architecture of the
Jekejeke Runtime interpreter.

 Available Optimizations: We will also highlight some optimizations that were imple-
mented for the interpreter.

 Strategies Comparison: We conducted a couple of performance tests. The main in-
dicator that was measured was the elapsed time for various test cases.

 Interpreter Comparison: We conducted a couple of performance tests. The main in-
dicator that was measured was the elapsed time for various test cases.

 Appendix Harness Listings: The full source code of the Java classes and the
Prolog texts for the test harness is given.

 Appendix Test Program Listings: The full source code of the Prolog texts for the
test programs is given.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 6 of 63

2 Study Object
In this section we give a brief introduction into the architecture of the Jekejeke Runtime inter-
preter. We will highlight the following points:

 Memory Organization: The Jekejeke Prolog system is based on the notion of inter-
preter and knowledge base Java objects. We will explain how these objects are laid
out in memory and how they basically interact.

 Resolution Step: To later understand the available optimizations, we must first un-
derstand how an interpreter frame is further structured into sub objects.

 Test Scope: In this section we will describe our testing approach in more detail. In
particular we will give details how we measured the test cases and under what cir-
cumstances we run the test cases.

2.1 Memory Organization
The Jekejeke Prolog system is based on the notion of interpreter and knowledge base Java
objects. We will explain how these objects are laid out in memory and how they basically
interact. The Java virtual machine allocates to each thread its own stack. The stack size is a
parameter during the creation of the thread. During their execution, the threads then share
the heap where the Java objects reside.

Thead 3
(Dead)

Thead 2
(Alive)

Thead 1
(Alive)

Stack Space Heap Space

Object 3
(Frame)

Object 2
(Frame)

Object 1
(Frame)

Object 5
(Clause)

Object 4
(Clause)

… … Knowledge Base
Interpreter

Picture 1: Memory Organization

The Java virtual machine automatically reclaims used heap and stack space by means of a
garbage collection. When a thread dies the stack space is returned. When a Java object is
not anymore referenced by the stack of a living thread either directly or via other Java objects
than its heap space is returned. The reclamation of Java objects is done periodically or when
certain conditions meet. There is no means to explicitly return heap space.

The knowledge base consists basically of a set of clauses, which are in turn Java objects.
These clauses can be referenced and manipulated during the execution of a Prolog program.
We did not need to implement any special mechanism for the reclaim of clauses, since we
delegated the process fully to the Java virtual machine. When a clause is removed it will not
be any more referenced by the knowledge base. If an active thread does not anymore use
the clause, it will then automatically be removed by the garbage collection sooner or later.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 7 of 63

Whether an interpreter organization benefits from automatic garbage collection is less obvi-
ous. The interpreter will need a new frame whenever he performs a resolution step with an-
other clause. The basic backtracking algorithm will create and release frames in high fre-
quency and it could benefit from explicitly returned heap space. Also there are hardly any
references between frames that could be used by an automatic garbage collector since it will
not understand the indexing structure of Prolog variables into frames.

The Java virtual machine offers help here in the form of generation scavenging. This means
that the Java virtual machine can distinguishes between young and old objects, and young
objects are faster and more often reclaimed than old objects. For the tip of the backtracking
algorithm the interpreter fames will qualify for young objects. As a result these frames will be
automatically reclaimed by the garbage collection very quickly. The performance is even bet-
ter compared to explicit returned space, since the garbage collector can work in bulk.

Nevertheless having frames as allocated entities is costly. This holds for any Prolog system
implementation. Therefore various optimizations have been developed over the time. The
Jekejeke Prolog system implements a couple of these optimizations. We will explain them in
the following sections. In the context of garbage collection, these optimizations have all in
common that they try to archive either of the following:

 Circumvent Allocation: Avoid the creation of a Java object early on. Java objects
that have never been created don’t need to be reclaimed.

 Decrease Connectedness: Lower the reachability of a Java object early on. Java
objects that are not reachable anymore can be reclaimed.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 8 of 63

2.2 Resolution Step
To later understand the available optimizations, we must first understand how an interpreter
frame is further structured into sub objects. Interpreter frames are required to represent a
successful resolution step and they should also accommodate for the undoing and the con-
tinuation of a resolution step. Both capabilities are needed in the backtracking algorithm.

The resolution step is based on the following input:

A :- B1, .., Bn The old answer term and old list

C :- D1, .., Dm The picked clause

The answer term can be viewed as a list of the variables from the initial query. It is carried
around so that we can display the answer substitution when the initial query has been suc-
cessfully solved.

Now suppose that is a substitution that will rename the variables of the picked clause by
new fresh variables. Further suppose that is the most general unifier of B1 and C. Then
the resolution step will yield the following new current answer term and current goal list:

A :- D1, .., Dm, B2, .., Bn The new answer term and goal list

The above can be efficiently implemented by means of skeleton and display pairs. Displays
serve the purpose of providing fresh un-instantiated variables for a clause. They are thus
capable of representing the substitution . The variable place holders inside a display are
then modified during unification. They are thus also capable of representing the most general
unifier . Therefore the dominant structure of a frame will be the display.

But with the display alone we could not implement backtracking, since it will not allow us the
undoing and the continuation of a resolution step. For undoing the resolution step it is not
enough to simply forget the current display, since unification might also have modified previ-
ously allocated displays. Therefore the unification will produce a trail which records the modi-
fied variable place holders and which can later be used to undo the unification.

Besides the trail we will also need a pointer into the input list of the clauses. The pointer will
refer to the currently picked clause. This will allow us to continue our search with the next
clause upon backtracking. Besides that a further continuation structure will be needed.
Namely instead of building the new goal list by appending the old goal list and the picked
clause body, we simply store the old goal list as a later continuation in the display. And the
search continues immediately with the picked clause body.

In summary an interpreter frame is structured as follows. The fields stemming from the reso-
lution step are marked by an asterisk (*). All other fields have been introduced to provide
further functionality needed by the Jekejeke Prolog implementation:

Display

 *Place Holders: Might refer to a skeleton and display pair.
 *Continuation: Points to the old goal list.
 Prune: Points to the true cut interpreter frame.
 Number: The number of choice points when this display was created.
 Flags: Flags of this display.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 9 of 63

 Clause: The originating clause for which this display was created.

Choice Point

 *At: The currently picked clause.
 *Trail: Lists the instantiated place holders.

It should be noted, that we divert from the architecture of the Warren Abstract Machine
(WAM) in two respects. The first difference can be seen in the way goals of a clause are in-
voked. In the WAM machine the skeleton display pointer pair approach is broken for goals. It
is explicitly noted in [4] that goal invocations are dynamically created by assembling the ar-
guments and then invoking the predicate. In our architecture we stick to the skeleton display
pointer pair approach. Each goal in a clause is simply a different skeleton pointer which is
completed by the display pointer of the clause instantiation.

Sticking to the skeleton display pointer pair approach for goals can be very efficient when
there are efficient means to move from one skeleton pointer to the other. This is archived by
turning each body of a clause into a goal list representation. But Prolog would not be com-
plete if it would only be based on an efficient resolution step. What is typically also needed is
a construct that allows the pruning of the search tree. The usual predicate for this is the cut
and which will destroy any choice points up to its own frame.

The second difference is now found in the way how we deal with the cut. Jekejeke Prolog
differs from other Prolog as far as we allow naked variables and cut transparent predicates.
For this purpose the frame also contains a prune field, which points to the true frame that will
belong to a cut. As a result we can invoke cuts inside meta-predicates with the desired result.
Eventually this could also be realized inside a WAM, but the default mode of analysis and
execution is that a cut is statically recognized inside a clause and that the cut will only prune
its own frame and not an eventually inherited frame.

We have already explained most of the fields of the interpreter frame. The remaining “num-
ber”, “perms” and “clause” fields have various purposes. The “number” field is used by the
body variable elimination optimization to notice whether the intermediate goals were deter-
ministic, i.e. whether they have not created any new choice points. The “perms” field is used
to determine whether the current execution belongs to the user or the system, and also to
avoid double work in the stack frame elimination optimization. The “clause” field is simply
used to provide source file and line number information in a stack trace.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 10 of 63

2.3 Test Scope
In this section we will describe our testing approach in more detail. In particular we will give
details how we measured the test cases and under what circumstances we run the test cas-
es. The test harness was used to perform internal and external tests. In the internal tests we
compared Jekejeke Prolog in different configurations. In the external tests we compared the
optimal Jekejeke Prolog configuration with different existing products.

The test scope included the following features of a Prolog interpreter:
 The elapsed runtime time.
 Built-in predicates for arithmetic (is/2, </2, etc..).
 Defined predicates with argument unification.
 Basic control constructs (!/0, fail/0, etc..).
 List comprehension predicates (findall/3, etc..).
 Definite clause grammar rules (-->/2, phrase/3, etc..).
 Advanced control constructs (;/2, ->/2, \+/1, etc..).

The test scope did not include the following features of a Prolog interpreter:
 The memory usage at runtime time.
 Built-in predicates for structures (=../2, =/2, functor/3, @</2, etc..).
 Built-in predicates for atoms (atom_concat/3, atom_length/2, etc..).
 Dynamic database access (assertz/1, retract/1, clause/1, etc..).
 Text and byte stream input/output (put_char/1, get_byte/2, etc..).
 List sorting predicates (sort/2, keysort/2, setoff/3, etc..).
 Perpetual processes via infinite recursive loops.
 The elapsed consult time.
 The memory footprint of consulted files.

To perform the internal and external tests we used the same set of test programs and the
same kind of harness. Each test program consists of an entry point that will compute the so-
lution to a problem. This entry point was then iterated via the test harness. The number of
iterations was chosen in such a way that for each test program a time measure of the same
order can be obtained. The following test programs and number of iterations were used:

Table 1: Iterations of the Test Programs
Iterations Name Description

6’001 nrev Naïve reverse
301 crypt Crypt arithmetic.

30’001 deriv Symbolic derivation.
61 poly Polynomial reduction.

6’001 qsort Quick sort of a list.
11 tictac Tic-Tac-Toe game.
16 queens 9-queens problem.

3’001 query Database query.
31 mtak McCarthy Tak function.
11 perfect Perfect numbers.

20’001 calc DCG calculator.

When doing the internal tests we varied some Prolog flags. We used a Java class and our
Prolog API as the main entry point so that the runtime library is tested. For the external tests
we used the Java class again. For each compared Prolog system we had to adapt the code
that retrieves the elapsed runtime. Details on the test harness and the test programs can be
found in the appendix.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 11 of 63

3 Test Programs
In the following we give a short description of each test program. The following test programs
are provided:

 nrev Test Program
 crypt Test Program
 deriv Test Program
 poly Test Program
 qsort Test Program
 tictac Test Program
 queens Test Program
 query Test Program
 mtak Test Program
 perfect Test Program
 calc Test Program

This document does not contain the source code of the test programs. A browsable version
of the source code of the test programs can be found on the following web site:

www.jekejeke.ch/idatab/doclet/blog/en/docs/05_run/07_benchmark/package.jsp

Further the source code is also bundled in the suprun.zip when downloading the Jekejeke
Prolog runtime library from the web site.

3.1 nrev Test Program
The naïve reverse computes the reverse of a list by invoking a concatenate function. The
order of the algorithm thus becomes O(n2). An algorithm with an accumulator parameter
would be more efficient. Nevertheless the predicate is a popular benchmark and it was al-
ready found in D.H.D. Warren’s thesis [2, page 219].

One test iteration will reverse a list with 30 numbers.

www.jekejeke.ch/idatab/doclet/blog/en/

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 12 of 63

3.2 crypt Test Program
The crypt riddle is a complication of the well-known SEND + MORE = MONEY riddle. Our
riddle is found in W.C. Trigg’s collection [1, problem 223] and it will not only involve addition
but also multiplication. We solve for a result of the following riddle. The goal is to find digits
that can replace the letters:

O E E
E E

------- *
E O E E
E O E

O O E E

A letter E stands for an even digit. The letter O stands for an odd digit. The initial E letters are
not allowed to receive the zero value. Otherwise all digits of the corresponding class are al-
lowed. The riddle has exactly one solution as follows:

3 4 8
2 8

------- *
2 7 8 4
6 9 6

9 7 4 4

One test iteration will solve the riddle.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 13 of 63

3.3 deriv Test Program
Symbolic derivation of formulas is mainly based on the chain rule. This rule reduces the deri-
vation of the composition of two functions to the derivation of each separate function. The
chain rule reads as follows:

dy(u) dy(u) du
----- = ----- --
dx du dx

Early implementations of symbolic derivation were reported with LISP. The Prolog implemen-
tation can take advantage of pattern matching. Our test predicate will not perform a simplifi-
cation of the resulting expressions. The benchmark is already found in D.H.D. Warren’s the-
sis [2, page 222].

One test iteration will derive the ops8, the divide10, the log10 and the times10 examples.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 14 of 63

3.4 poly Test Program
Simple polynomials are known to most of us from basic school algebra. They can be used to
express geometrical identities such as the Pythagorean Theorem a2 + b2 = c2. Algebraic ma-
nipulations can even mimic geometrical reasoning. Here is a proof of the Pythagorean Theo-
rem based on some areal equations:

c

a
b

c

cc
a

b

a
b

b
a

square area = grey area + white area

 (a + b)2 = 4ab/2 + c2

 a2 + 2ab + b2 = 2ab + c2

 a2 + b2 = c2

Picture 2: Pythagorean Theorem

In higher mathematics polynomials can be viewed as algebraic extensions of rings. An inter-
esting operation is the evaluation of an algebraic expression in a polynomial ring. This is ex-
actly what the following Prolog text does. The original Prolog text is an adaption of a Lisp
program and can be found in the Aquarius test suite [3].

One test iteration computes (1-x+y-z)10.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 15 of 63

3.5 qsort Test Program
This predicate sorts a list by the quick sort algorithm developed by C.A.R. Hoare. The algo-
rithm recursively proceeds by splitting the given list into two halves and then sorting each
half. In the given benchmark the splitting is simply based on the head of the list. The algo-
rithm has a good average order of O(n log n), but it can have an order of O(n2) in the worst
case. The benchmark is already found in D.H.D. Warren’s thesis [2, page 220].

One test iteration will sort a list with 50 numbers.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 16 of 63

3.6 tictac Test Program
Tic-tac-toe is the classic toy example for min-max search [13]. The search space of the game
is small enough so that a full depth search can be deployed. End positions in the game can
be valued -1, 0 and +1 depending on whether the opponent wins, a tie has been reached or
the current player wins.

Since the valuation is tri-state we have implemented the min-max search via negation. The
predicate best/3 should indicate that from the given position there is a move that puts the
given player in a position with a winning strategy. This can be used to play the game. We can
for example pose the following query and will get the following answers:

?- best([[x,o,-],[-,x,-],[-,-,o]], x, X).
X = [[x, o, -], [x, x, -], [-, -, o]] ;
X = [[x, o, -], [-, x, -], [x, -, o]] ;
No

We can easily verify that the computed positions are indeed winning positions:

Picture 3: Search Tree Excerpt

In one test iteration we will verify that from start the first player has no winning strategy. This
can be verified in that the following query fails:

?- init(X), best(X,x,_).
No

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 17 of 63

3.7 queens Test Program
In the modern chess play the queen piece has the most power, as it can move along the di-
agonals, the verticals and the horizontals. It thus combines the power of the bishop piece
and the rook piece. Instead of playing chess the chess board can also be used to pose rid-
dles. One such riddle asks for the placement of nine queens so that they don’t attack each
other. Here is a solution on the 4x4 checker board:

♕

♕

♕

♕

Picture 4: 4 Queens

The solution algorithm works similar to the solution algorithm for the Sieve of Eratosthenes in
that occupied places are crossed out. The difference is that backtracking is involved in the
placement of the queens and that we do not represent the whole board. Only the distinct po-
sitions of the placed queens are remembered in a list, which makes the check for horizontal
and vertical obsolete. The diagonal check is then implemented via arithmetic.

One test iteration will compute all 352 solutions for the 9x9 checker board.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 18 of 63

3.8 query Test Program
The query benchmark tests the suitability of Prolog for database problems. Prolog facts are
used to represent information about countries such as area and population. The query then
computes countries of similar population density. The benchmark is already found in D.H.D.
Warren’s thesis [2, page 220].

One test iteration will find all similar countries.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 19 of 63

3.9 mtak Test Program
Highly recursive functions that majored primitive recursive functions have already been in-
vented by Ackerman in the late 1920s. In 1970s Takeuchi came up with a highly recursive
function that has astonishing simple closed form solution. The recursive function is:

| Y for X <= Y
tarai(X,Y,Z) := |

| tarai(tarai(x-1,y,z),tarai(y-1,z,x),tarai(z-1,x,y))

And its close form:

| Y for X <= Y
|

tarai(X,Y,Z) := | Z for Y <= Z
|
| X

But McCarthy spoiled it all by a slight modification. Instead of returning Y in the first case of
the recursive definition, in his version the value of Z is returned. This function has to become
known as the tak function.

One test iteration will compute the tak function for the arguments (18, 12, 6).

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 20 of 63

3.10perfect Test Program
A perfect number is defined to be one which is equal to the sum of its aliquot parts. The four
perfect numbers 6, 28, 496 and 8128 seem to have been known from ancient times and
there is no record of these discoveries:

6 = 1 + 2 + 3,
28 = 1 + 2 + 4 + 7 + 14,
496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248
8128 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064

The first recorded mathematical result concerning perfect numbers which is known occurs in
Euclid’s Elements written around 300BC. He gave a condition on perfect numbers based on
what later became known as Mersenne prime numbers.

One test iteration will find the perfect numbers below 500.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 21 of 63

3.11calc Test Program
Definite clause grammars (DCG) are an extension of context free grammars. DCGs allow
arbitrary tree structures to be built in the course of parsing and they allow extra conditions
dependent on auxiliary computations. DCGs can also be used for text generation.

In our test program we want to use a DCG to parse an arithmetic expression and to return
the evaluation of that expression. A first attempt would lead to the following grammar rule to
handle for example subtraction:

expr(Z) --> expr(X), "-", term(Y), {Z is X-Y}.

Unfortunately the above rule is left-recursive and top down parsing via DCG would run into
an infinite loop. Therefore we use a modified set of grammar rules that implements the syn-
tax via tail recursion and the evaluation via additional accumulator variables. We have also
put cuts as to make the parser greedy and deterministic.

One test iteration will parse and evaluate the following expressions:

-12+34*56+78 /* Evaluates to 1970 */
(-12+34)*(56+78) /* Evaluates to 2948 */

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 22 of 63

4 Available Optimizations
We will also highlight some optimizations that were implemented for the interpreter. In partic-
ular we will further explain the following points:

 Choice Point Elimination: The Jekejeke Prolog system is capable of omitting choice
points for deterministic predicates. We will describe in more detail the used technique.

 Clause Indexing: The Jekejeke Prolog system is capable of dynamically creating in-
dexes for multiple argument positions and that might span multiple arguments.

 Body Variable Elimination: The Jekejeke Prolog system is capable of reclaiming
variables during its execution. We will describe in more detail the used technique.

 Stack Frame Elimination: The Jekejeke Prolog system is capable of dropping stack
frames for last call goals. We will describe in more detail the used technique.

 Head Variable Elimination: The Jekejeke Prolog system is capable of eliminating
the need for some head variables. We will describe in more detail the used technique.

4.1 Choice Point Elimination
The Jekejeke Prolog system is capable of omitting choice points for deterministic predicates.
We will describe in more detail the used technique. The point of departure for choice point
elimination is a naïve implementation of Prolog with cut. In this implementation defined predi-
cates always create choice points after success and the cut only removes choice points upon
redo. Choice point elimination now implements the following optimizations to reduce the con-
sumption of choice points:

1) Exit from Call last Clause: When a defined predicate was invoked for the first time
and the last clause was found then don’t create a choice point.

2) Exit from Redo last Clause: When a defined predicate was invoked an additional
time and the last clause was found then release the current choice point.

3) Cut on Call: The cut will remove all choice points up to its own true frame before
succeeding. In doing so it will not destroy the bindings from the intermediate goals.

To explain the optimizations 1) and 2) we can use the following example Prolog text:

p(a).
p(b).

We have two facts. When the first fact matches, we need a choice point so that we can go to
the second fact. In the naïve implementation we keep the choice point even when the second
fact matches. We can test this as follows:

?- set_prolog_flag(sys_choice_point, off).
Yes
?- p(b).
Yes ;
No
?- p(X).

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 23 of 63

X = a ;
X = b ;
No

The set_prolog_flag/2 system predicate allows us to switch off choice point elimination.
When we invoke p(b), we see that after the success the system will prompt. This is an indica-
tive that choice points are still around. Further when we invoke p(X), we see that after the
first and the second solution the system will prompt. The prompt is again an indicative that
choice points are still around. In both cases we quit the prompt with a redo request.

Now let’s run the example with choice point elimination enabled. We can use the directive
set_prolog_flag/2 to switch on the choice point elimination optimization:

?- set_prolog_flag(sys_choice_point, on).
Yes
?- p(b).
Yes
?- p(X).
X = a ;
X = b

As could be seen, after the success of p(b) we will did not get a prompt anymore. This is now
an indicative that the creation of choice point in situation 1) has been omitted. Further we
also don’t get a prompt anymore after the last solution of p(X). Therefore the creation of
choice point in situation 2) has been omitted.

To explain the optimizations 3) we can use the following example Prolog text:

p(X) :- q(X), !.
p(b).

q(a).

The predicate q has just one fact and is invoked by the predicate p. The predicate p has one
rule and one fact. The rule that precedes the fact has a cut, so that when the first rule has
passed its cut, the fact will not anymore be considered. In the naive implementation of the
cut, the cut will only remove the choice point of the first rule in a redo. It will therefore auto-
matically keep the bindings of the intermediate goals. We can test this as follows:

?- set_prolog_flag(sys_choice_point, off).
Yes
?- p(b).
Yes ;
No
?- p(X).
X = a ;
No

The cut works as expected. Procedurally we can derive p(b) since the cut was not passed as
the q invocation failed. Procedurally we can derive for p(X) only one solution X=a, since this
time the cut was passed. Both queries again result in a prompt which we quit with a redo
request again. For the second query the prompt is an indicative that cut left the choice point
untouched upon exit.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 24 of 63

Now let’s run the example with choice point elimination enabled:

?- set_prolog_flag(sys_choice_point, on).
Yes
?- p(b).
Yes
?- p(X).
X = a

For both queries we do not get a prompt anymore. For the second query this means that in
situation 3) the choice points where already removed when the cut was passed. This com-
pletes our exemplar exposition of the choice point elimination optimization for defined predi-
cates and the cut.

The clean implementation of the choice point elimination optimization took us quite some
time. Especially the cut was quite challenging. Because we want to keep the instantiations of
the intermediate goals the trail of the eliminated choice points cannot be undone. On the oth-
er hand the trail of an eliminated choice point has to be merged with the other trails, so that
upon an outer backtracking the instantiated variables are still correctly reset. The solution to
this problem is a global trail with pointers into it.

The optimization is quite fundamental, since without the ability to eliminate choice points the
head variable elimination and the stack frame elimination would not be possible. For more
details on these two optimizations see some later sections. It should also be noted that
choice point elimination and clause indexing have a synergetic effect, since optimization 1)
and 2) might happen more often to smaller groups of clauses. For more details on the clause
indexing optimization see the next sections.

Choice point elimination is also available for system and custom built-ins. System built-ins
are free to create and destroy arbitrary choice points. System built-ins can thus follow choice
point elimination strategies that even reach into optimization 3). For custom built-ins defined
via Java methods there is a special protocol for the elimination of choice points. The Java
foreign predicate can indicate via the try flag in the call out object whether they want to cre-
ate respectively keep a choice point. This caters for the optimizations 1) and 2).

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 25 of 63

4.2 Clause Indexing
The Jekejeke Prolog system is capable of dynamically creating indexes for multiple argument
positions and that might span multiple arguments. We will describe in more detail the used
technique. The point of departure for clause indexing is a naïve implementation of Prolog
without any indexing. In this implementation defined predicates are always scanned in full to
find a matching clause. Clause indexing now implements the following indexes on the clause
set of a predicate:

1) First Argument Indexing: When the defined predicate is called with a non-variable
first argument then the functor of this argument is used in a hash table lookup to find
a smaller set of clauses for scanning.

2) Non-First Argument Indexing: If the first argument is a variable then the calling goal
is searched for another argument which is non-variable and the functor of this argu-
ment is then picked for a hash table lookup.

3) Multi-Argument Indexing: The hash table does not point to clause sets but to further
hash tables so that recursively after a found non-variable argument further non-
variable arguments can be searched in the calling goal.

Older Prolog systems did first argument indexing. This indexing was done independent of the
call pattern so that the index was already created during the consult of the clauses. Jekejeke
Prolog follows a different strategy. When clauses are consulted no indexes are necessarily
maintained. Only after a defined predicate has been first invoked and the arguments have
been analysed indexes are created. Additional indexes might later be dynamically created
when the predicate is called with new non-variable argument patterns.

To explain the optimization 1), 2) and 3) we can use the following example Prolog text. We
will use a binary predicate for illustration but the clause indexing method has also been im-
plemented for defined predicates for less or more arguments:

r(a, b).
r(a, c).
r(d, c).
r(d, e).

We have four facts. We will be able to see what clause sets are picked in that we can see
whether a choice point is left for the last clause in the set or not. In the naïve implementation
always the full clause set is picked. We can test this as follows:

?- set_prolog_flag(sys_clause_index, off).
Yes
?- r(a, X).
X = b ;
X = c ;
No

The set_prolog_flag/2 system predicate allows us to switch off clause indexing. When we
invoke r(a, X) then we see that after the first and second solution the system will prompt. This
indicates that choice points are still around since the full clause set is scanned. Now let’s run
the example with clause indexing enabled. We can use the directive set_prolog_flag/2 to
switch on clause indexing:

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 26 of 63

?- set_prolog_flag(sys_clause_index, on).
Yes
?- r(a, X).
X = b ;
X = c

As could be seen we don’t get a prompt anymore after the last solution of r(a, X). Therefore
the clause indexing provided us with a smaller clause. This verifies the working of clause
indexing in situation 1).

To explain situation 2) we can use the following query:

?- set_prolog_flag(sys_clause_index, off).
Yes
?- r(X, c).
X = a ;
X = d ;
No

When we invoke r(X, c) then we see that after the first and second solution the system will
prompt. This indicates that choice points are still around since the full clause set is scanned.
Now let’s run the example with clause indexing enabled:

?- set_prolog_flag(sys_clause_index, on).
Yes
?- r(X, c).
X = a ;
X = d

As could be seen we don’t get a prompt anymore after the last solution of r(a, X). Therefore
the clause indexing provided us with a smaller clause.

We can use the following query to finally explain situation 3):

?- set_prolog_flag(sys_clause_index, off).
Yes
?- r(a, c).
Yes ;
No

When we invoke r(a, c) then we see that after the success the system will prompt. This is an
indicative that choice points are still around since the full clause set is scanned. Now let’s run
the example with clause indexing enabled:

?- set_prolog_flag(sys_clause_index, on).
Yes
?- r(a, c).
Yes

As could be seen, after the success of r(a, c) we will did not get a prompt anymore.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 27 of 63

4.3 Body Variable Elimination
The Jekejeke Prolog system is capable of reclaiming variables during its execution. We will
describe in more detail the used technique. This optimization technique introduces reference
counting for variable place holders. During unification when a variable is bound to a term, the
reference count of all the variables in the term is incremented by one. When the variable in-
stantiation is undone the reference count of the variables in the unbound term is decrement-
ed by one. Since variable place holders start with a reference count of one, the reference
count of a variable place holder should never reach zero this way.

Now a new instruction comes into play. The new instruction will be “dispose_bind” and it al-
lows the explicit decrementing of the reference count of a variable place holder in the body.
This instruction will be idempotent and it will only be applied when no choice points are left
for the given clause. This allows constantly reclaiming variable place holders and the term
structures that are bound by the variable place holders.

The decrementing of the reference count of a variable place holder and its delay of the cor-
responding “dispose_bind” instruction pose some overhead not necessary for non-
deterministic predicates. The overhead can be minimized to simple counter checks and
some speed up structure in the terms, leading to a surprisingly low additional cost. The im-
plementation itself is based on a liveliness analysis of the clause variables. For each variable
we determine the following two attributes:

 Max Goal: The value -1 if the variable only occurs in the head, otherwise the index of
the last goal where the variable occurs.

The new instruction is then placed according to the above value. The “dispose_bind” instruc-
tion will be found in front of a goal call or a body end for those variables with max goal + 1 =
goal index respectively clause size. Thus the “dispose_bind” instructions are placed at the
earliest moment possible moment.

The effect of this optimization can be observed by listing the intermediate form. We will start
with the head variable, stack frame and body variable optimization switched off. These opti-
mizations are explained in a later sections and its presence would only complicate the cur-
rent explanations. The switching off is done as follows:

?- set_prolog_flag(sys_head_variable, off).
?- set_prolog_flag(sys_stack_frame, off).
?- set_prolog_flag(sys_body_variable, off).

We will explain the effect by means of the following Prolog text. It is the Prolog code for the
naïve reverse implementation:

rev([],[]).
rev([X|Rest],Ans) :- rev(Rest,L), concatenate(L,[X],Ans).

concatenate([],L,L).
concatenate([X|L1],L2,[X|L3]) :- concatenate(L1,L2,L3).

We can now list the intermediate form of the rev/2 predicate via the built-in friendly/1. As can
be seen the instruction “dispose_bind” is not yet used:

?- friendly(rev/2).

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 28 of 63

[...]

rev([X | Rest], Ans) :-
rev(Rest, L),
concatenate(L, [X], Ans).

0 new_bind X, Rest
1 unify_compound _0, [X | Rest]
2 new_bind Ans
3 unify_term _1, Ans
4 init_display
5 new_bind L
6 call_goal rev(Rest, L)
7 call_goal concatenate(L, [X], Ans)
8 call_cont

The rest of the intermediate form is practically a literal translation of the head and the body of
the clause. The head results in unify term instructions for each argument. The body results in
goal call instructions “call_goal” for each goal. The intermediate form ends with a continua-
tion call instruction “call_cont”.

The predicate rev/2 works as expected:

?- rev([1,2,3],X).
X = [3, 2, 1]

We will now switch on the body variable elimination optimization. This is done as follows:

?- set_prolog_flag(sys_body_variable, on).

We can now re-consult the Prolog text for the naïve reverse implementation. When generat-
ing the intermediate form during consult, the Prolog interpreter will now apply the body varia-
ble elimination optimization. We can again list the intermediate form of the rev/2 predicate via
the built-in friendly/1:

?- friendly(rev/2).
[...]

rev([X | Rest], Ans) :-
rev(Rest, L),
concatenate(L, [X], Ans).

0 new_bind X, Rest
1 unify_compound _0, [X | Rest]
2 new_bind Ans
3 unify_term _1, Ans
4 init_display
5 new_bind L
6 call_goal rev(Rest, L)
7 dispose_bind Rest
8 call_goal concatenate(L, [X], Ans)
9 dispose_bind X, Ans, L
10 call_cont

In the second rule of the predicate rev/2 we find that the “dispose_bind” instructions have
been placed. Not all “dispose_bind” instructions have been placed before the continuation

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 29 of 63

call. The “dispose_bind” instruction for the variable “Rest” has been placed before the last
goal call, since this is the only variable that is not anymore used in the clause after this point.

The predicate rev/2 still works as expected:

?- rev([1,2,3],X).
X = [3, 2, 1]

The current implementation of body variable elimination is not based on some mode analysis
such as free or ground [6]. The decrementing instructions are placed independent of the
mode of the arguments. Nevertheless the mode has an effect on the decrementing. For ex-
ample if a head argument is ground then the term unification will not increase the reference
count of a variable place holder since the clause variable will be instantiated with a part of
the ground term and not vice versa. As a result decrementing will always immediately re-
move the variable from the display and the trail.

On the other if a head argument is non-ground then there are two possible situations. The
first situation is similar to the ground case. It happens when a clause variable will be instanti-
ated with a part of the non-ground term. Again as a result the decrementing will always re-
move the variable. It can even be arranged that this situation also applies in a variable to
variable instantiation. The second situation is when a variable of the non-ground term unifies
with a part of a clause term. The reference count of the clause variables in the clause term
will then be increased and the clause variables survive as long as the non-ground term sur-
vives.

The delay of the decrementing of a variable place holder has been implemented in the spirit
of [7, section 4.4.1]. Namely we also reorder the variables of a clause with respect to their
max goal value and can then simply move an index. Further we also pose a choice point
condition. But it seems that our solution is a little bit more flexible, since we can still move the
index when the choice point is later removed. But our system might forget about the decre-
menting when an outer choice point removal happens. So there is room for implementation
improvement and better coverage in the benchmarks.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 30 of 63

4.4 Stack Frame Elimination
The Jekejeke Prolog system is capable of dropping stack frames for last call goals. We will
describe in more detail the used technique. We have already seen the ingredients of a stack
frame in the previous chapter. Among the fields of the stack frame we find the continuation.
This field points to the old goal list skeleton and display. There are various options to imple-
ment this field. For the requirement of the resolution step it would be enough to point to the
old goal list minus the old goal. For the purpose of obtaining a call chain it is more convenient
to also include the old goal in the pointer.

When building the stack frame the Jekejeke Prolog interpreter includes the old goal skeleton
and display in the continuation frame. There is a slight speed up by this method, since the
access to the goal list succeeding the old goal is thus deferred to the new end body. Follow-
ing this field from display to display the Jekejeke Prolog interpreter can generate a call chain
at any time. This is for example used in the exception handling to generate a meaningful ex-
ception context. The call chain is available independent of some debugging mode. We use
the following Prolog text as our first example to explain the stack frame:

?- set_prolog_flag(sys_stack_frame, on).
?- [user].
p :- q.
p.

q :- abc.
q.
^D

When the predicate p is invoked the Prolog interpreter will in turn invoke the predicate q, and
subsequently the predicate r. There it will run into an undefined predicate exception. The
exception will display the full call chain:

?- p.
Error: Undefined predicate abc / 0.

abc / 0
q / 0
p / 0

The old goal skeleton and display is needed in a choice point to try further unifications. This
gives us the idea that when there is no choice point that the old goal skeleton and display is
not needed anymore. Unfortunately we cannot drop the old goal skeleton and display in all
cases, since it serves us as the continuation. But there is one case where a drop of the old
goal skeleton and display is feasible. We can drop it in case that the goal list succeeding the
old goal is in itself an end body. We can then overwrite the continuation by the parent of the
continuation, an early execution of the old end body.

The overwriting of the continuation by the parent continuation will shorten the call chain. That
the goal list succeeding the old goal is an end body indicates that the old goal was a last call.
Thus the call chain will be shortened when two conditions meet. An old last call and a new
omitted choice point. We can make the two conditions visible by the following example.

p :- q.
p.

q :- abc.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 31 of 63

The invocation of the predicate q is a last call. The predicate q itself will omit the choice point
since there is no additional rule. Therefore when the optimization is in place, we should ob-
serve that the predicate q is not anymore part of the call chain:

?- p.
Error: Undefined predicate abc / 0.

abc / 0
p / 0

In the above example both conditions have met. In the first example the condition of an omit-
ted choice point was not met. We will now produce an example where the condition of a last
call is not met. The example is as follows:

p :- q, h.
p.

q :- abc.

The invocation of the predicate q is not a last call anymore since it is followed by call of the
predicate h. But the predicate q itself will still omit the choice point. Nevertheless the optimi-
zation cannot take effect anymore and we will thus see the full call chain:

?- p.
Error: Undefined predicate abc / 0.

abc / 0
q / 0
p / 0

The last call condition will be detected at runtime from the intermediate form. There is no
special compile time instruction like “execute” in the intermediate form for the last call [4] of
the parent frame. Instead we will simply detect that the goal call is followed by a continuation
call. The goal call needs not to be a callable term at compile time it can also be a naked vari-
able so that we will only know about the called predicate at runtime. Therefore the optimiza-
tion applies also from within meta-predicates that have goal arguments. Among the meta-
predicates that work with this optimization are call/1, (,)/2, (;)/2 and (->)/2.

The last call condition on the parent frame does not change at runtime since it depends on
the compile time intermediate form. On the other hand the condition that a choice point has
been omitted is not stable. When a clause matches we might detected that we cannot omit
the choice point. But still at runtime the choice point can be removed later on by a cut. We
have implemented the stack frame elimination in such a way that the omission of the choice
point is constantly monitored. This is expressed by the new instructions “last_goal” and
“last_cont”. This is seen in the intermediate form as follows:

?- friendly(p/0).
p :-

q,
h.

0 init_display
1 last_goal q
2 last_goal h
3 last_cont

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 32 of 63

[...]

As can be seen the monitoring is done on all goals and on the continuation. We will see in
the next section about head variable elimination that under this optimization fewer goals will
be monitored. The monitoring of all goals is necessary since any of the goals could be cut
transparent and issue a cut. So particularly checking whether a goal has the form of the cut
(!) would be of no avail. Since other meta-predicates such as (,)/2, (;)/2 and (->)/2 can issue a
cut depending on the followed solution path during their execution.

That the cut can also provoke the shortening of the call as chain can be seen by the following
example. The example is very similar to our first example where the optimization did not ap-
ply. The optimization did not apply since q had a second rule, and thus the choice point was
not omitted. In the new example the cut will remove the choice point later on:

p :- q.
p.

q :- catch(abc, X, sys_print_exception(X)), !, abc.
q.

We use a catch/3 and sys_print_exception/1 to check the call chain of the first call of abc/0
before continuing with the cut and the second abc/0. The first call of abc/0 will show the full
call chain. Whereas the second call of abc/0 will only show a shortened call chain:

?- p.
Error: Undefined predicate abc / 0.

abc / 0
catch / 3
q / 0
p / 0

Error: Undefined predicate abc / 0.
abc / 0
p / 0

It should be noted that the optimization has also a positive effect on body variable elimina-
tion. Since we will simulate the end body of the last call, we will also invoke the
“dispose_bind” instructions preceding the end body. As a result we will eliminate more body
variables early on.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 33 of 63

4.5 Head Variable Elimination
The Jekejeke Prolog system is capable of eliminating the need for some head variables. We
will describe in more detail the used technique. Compared to the other optimizations, this
optimization does not have the greatest gain in average. Nevertheless we have implemented
it. Since it is a compile time optimization no bad cases are to be expected. The optimization
technique introduces an improved unification instruction. Normally during head unification
each goal argument is unified with the corresponding clause skeleton. The new unification
instruction allows unification between goal arguments.

To detect the situation when the improved unification instruction is applicable we had to
broaden our variable analysis. Based on the variable analysis for body variable elimination
we added additional attributes to a variable:

 Min Goal: The value -1 if the variable occurs in the head, otherwise the index of the
first goal where the variable occurs.

 Structure Flag: True if the variable occurs in some head position and this head posi-
tion does not equal the variable, otherwise false.

 Min Argument: The index of the first head position which equals the variable.

 Min Body: The index of the first goal where the variable occurs. Available for tempo-
rary variables but not for extra variables.

The min goal field can be used whether a variable occurs in the head and is thus a head var-
iable. If the value of the min goal field is -1 it is a head variable. The structure flag can be
used to determine whether a head variable needs special treatment. If the structure flag is
false then we do not perform the ordinary unification with the variable during head matching.
We call such a variable a temporary variable.

The min argument field is used when a temporary variable occurs multiple times in a head in
argument position. We then place a combined unification instruction to directly perform unifi-
cation between the corresponding argument positions in the calling goal. This saves ordinary
unification since the combined unification covers two ordinary unifications:

Ordinary Unifications
unify_term _1, X
unify_term _2, X

Combined Unification
unify_term _1, _2

The min body field is then used to determine when the place holder needs to be unified. We
place corresponding specialized unification instruction “unify_var” before the goal indicated
by the min body position. This instruction is aware that the second argument is a variable
and takes a slightly faster path for unification:

Ordinary Unification
unify_term _1, X

Specialized Unification
unify_var _1, X

Temporary variables that don’t have an occurrence in the body are called extra variables.
These variables will never see a corresponding specialized unification instruction “unify_var”
instruction in the body. Therefore we arrange that these variables are allocated at the end of
the display. The clause is then invoked with a shortened display without these variables.

The maximum of the min body field has a further purpose. It indicates when stack frame
elimination monitoring can be started. Before the maximum of this field there will be still spe-

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 34 of 63

cialized unification “unify_var” instructions for temporary variables. An early eliminating would
prevent us from unifying the temporary variable with the corresponding argument in the call-
ing goal since the calling goal is stored in the parent stack frame.

The effect of this optimization can be observed by listing the intermediate form. We will start
with the head variable optimization switched off:

?- set_prolog_flag(sys_head_variable, off).

We will explain the effect by means of the following Prolog text. It is the Prolog code for the
naïve reverse implementation:

rev([],[]).
rev([X|Rest],Ans) :- rev(Rest,L), concatenate(L,[X],Ans).

concatenate([],L,L).
concatenate([X|L1],L2,[X|L3]) :- concatenate(L1,L2,L3).

We can now list the intermediate form of the concatenate/3 and the rev/2 predicate via the
built-in friendly/1. As can be seen the enhanced unification instruction “unify_term” with two
goal arguments is not yet used. Only the ordinary unification instruction “unify_term” with one
parameter argument and one skeleton argument is used. Also no specialized unification
“unify_var” for non-extra temporary variables is not yet seen:

?- friendly(concatenate/3).
concatenate([], L, L).

0 unify_atomic _0, []
1 new_bind L
2 unify_term _1, L
3 unify_term _2, L
4 init_display
5 dispose_bind L
6 last_cont

[...]
?- friendly(rev/2).
[...]

rev([X | Rest], Ans) :-
rev(Rest, L),
concatenate(L, [X], Ans).

0 new_bind X, Rest
1 unify_compound _0, [X | Rest]
2 new_bind Ans
3 unify_term _1, Ans
4 init_display
5 new_bind L
6 last_goal rev(Rest, L)
7 dispose_bind Rest
8 last_goal concatenate(L, [X], Ans)
9 dispose_bind X, Ans, L
10 last_cont

The intermediate form also contains the results of the body variable elimination and the stack
frame elimination from the previous sections. For the body variable elimination this means

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 35 of 63

the intermediate code is scattered with “dispose_bind” instructions. For the stack frame elim-
ination this means that “last_goal” and “last_cont” instructions are seen.

The predicate concatenate/3 works as expected:

?- concatenate(X,Y,[1,2,3]).
X = [],
Y = [1, 2, 3] ;
X = [1],
Y = [2, 3]
?- concatenate([1],[2,3],X).
X = [1, 2, 3]

We will now switch on the head variable elimination optimization. This is done as follows:

?- set_prolog_flag(sys_head_variable, on).

We can now re-consult the Prolog text for the naïve reverse implementation. When generat-
ing the intermediate form during consult, the Prolog interpreter will now apply the head varia-
ble elimination optimization. We can again list the intermediate form of the concatenate/3
predicate and the predicate rev/2 via the built-in friendly/1:

?- friendly(concatenate/3).
concatenate([], L, L).

0 unify_atomic _0, []
1 unify_term _1, _2
2 init_display
3 last_cont

[...]
?- friendly(rev/2).
[...]

rev([X | Rest], Ans) :-
rev(Rest, L),
concatenate(L, [X], Ans).

0 new_bind X, Rest
1 unify_compound _0, [X | Rest]
2 init_display
3 new_bind L
4 call_goal rev(Rest, L)
5 dispose_bind Rest
6 new_bind Ans
7 unify_var _1, Ans
8 last_goal concatenate(L, [X], Ans)
9 dispose_bind X, L, Ans
10 last_cont

In the first rule of the concatenate/3 predicate we see that the variable “L” has been judged
as an extra variable. Therefore the two ordinary unification instructions in line 3 and 4 were
replaced by one enhanced unification instruction in line 2. Subsequently the “new_bind”
instruction for the variable “L” was not anymore needed.

In the second rule we see that the variable “Ans” has been judged as a non-extra temporary
variable. Therefore the ordinary unification in line 5 was replaced by a specialized unification
in line 8. The “new_bind” instruction for the variable “Ans” was moved as well.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 36 of 63

Further the call of the rev/2 goal does not do stack frame monitoring anymore.

The predicate concatenate/3 still works as expected:

?- concatenate(X,Y,[1,2,3]).
X = [],
Y = [1, 2, 3] ;
X = [1],
Y = [2, 3]
?- concatenate([1],[2,3],X).
X = [1, 2, 3]

Prior to release 0.9.0 there was only the concept of an extra variable. The concept of a tem-
porary variable has then been introduced. The movement of the “unify_term” instruction still
put penalty for non-deterministic predicates since the instruction has to be repeated during
backtracking. The reason is that the variable binding caused by this instruction is logged in
the trail and thus automatically undone during backtracking.

On the other hand the optimization seems to be beneficial to deterministic predicates. Espe-
cially to programming patterns of the following form:

P(X,Y) :- G(X), B(X,Y).

If G is a guard that might or might not succeed execution without temporary variables turns
out costly. The variable Y would always be unified, even when the guard fails. With tempo-
rary variables the variable is only unified when we pass the guard.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 37 of 63

5 Strategies Comparison
We conducted a couple of internal performance tests. The main indicator that was measured
was the elapsed time for various test cases. The test is documented along the following
lines:

 Test Results: In this section we will present the figures that were obtained from our
test runs. Figures for various versions of the Jekejeke Prolog system will be given.

 Discussion Choice Point Elimination: In this section we will provide a critical dis-
cussion of the impact of the choice point elimination optimization.

 Discussion Clause Indexing: In this section we will provide a critical discussion of
the impact of the clause indexing optimization.

 Discussion Body Variable Elimination: In this section we will provide a critical dis-
cussion of the impact of the body variable elimination optimization.

 Discussion Stack Frame Elimination: In this section we will provide a critical dis-
cussion of the impact of the stack frame elimination optimization.

 Discussion Head Variable Elimination: In this section we will provide a critical dis-
cussion of the impact of the head variable elimination optimization.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 38 of 63

5.1 Test Results
In this section we will present the figures that were obtained from our test runs. Figures for
various versions of the Jekejeke Prolog system will be given. We were running our test har-
ness on the following machine:

Operating System: Windows 7 Professional
Processor: Intel Core i7-2620M @ 2.70GHz
Memory: 4.00 GB
Energy Settings: HP Optimized

We used the following Jekejeke Prolog system version. The test harness was started from
the runtime library via the Java Class Harness. We did not use the development environment
to run the test harness:

Java Version: JDK 1.8.0_25-b18 (64-bit)
VM Parameters: -mx512m -Duser.language=en
Library Version: Jekejeke Prolog Runtime Library 1.0.4
Concurrently Idle Applications: Word, Excel, Tomcat, SQL Server

We were then comparing the Jekejeke Prolog system under various optimization settings. In
particular we were running our test harness for the following different settings, gradually in-
creasing the number of optimizations:

Table 2: Compared Optimization Settings
Setting Choice

Point
Clause
Index-

ing

Body
Varia-

ble

Stack
Frame

Head
Varia-

ble
1) None off off off off off
2) Discussion Choice Point on off off off off
3) Discussion Clause Indexing on on on off off
4) Discussion Body Variable on on on off off
5) Discussion Stack Frame on on on on off
6) Discussion Head Variable on on on on on

We were running the test suite two times in a row, and were only measuring the second run.
The first run would be a cold start with incomplete caching of the predicate references. The
second run is a warm start which we wanted to measure.

Measuring warm start means also that we will not see some costs incurred by class loading
or by un-optimized Java code. The Java runtime had enough time to load classes and to ap-
ply just in time compilation and as well adaptive optimizations.

On the other hand the memory might already be fragmented. To avoid seeing a severe deg-
radation because of constant garbage collection we use a memory allocation that is larger
than the default of the Java virtual machine.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 39 of 63

The absolute raw results measured in milliseconds are displayed in the table below:

Table 3: Absolute Detailed Strategies Results (ms)
Test 1) 2) 3) 4) 5) 6)
nrev 995 989 942 911 748 720
crypt 667 667 621 643 620 624
deriv 6'634 5'506 5'924 4'107 509 391
poly 662 671 594 556 554 502
qsort 1'092 1'095 1'065 1'046 870 779
tictac 951 930 968 985 994 969
queens 823 812 806 796 784 739
query 2'276 2'339 1'039 1'001 968 985
mtak 1'006 1'012 1'035 836 815 676
perfect 1'271 1'159 1'205 1'238 740 527
calc 2'659 2'948 2'904 2'237 641 492
Total 19'036 18'128 17'103 14'356 8'243 7'404

The picture below shows the total results relative to their previous discussion:

Picture 5: Incremental Relative Strategies Results

We did not subtract the execution time for a dummy test from the results. Our measuring of a
dummy test revealed that its execution time is in the range of 2 milliseconds. Therefore all
our test results also measure the slight overhead of the test harness itself.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 40 of 63

5.2 Discussion Choice Point Elimination
In this section we will provide a critical discussion of the impact of the choice point elimina-
tion optimization. The choice point elimination already causes a speed-up in the average. We
observe an average speed-up factor of 95.2%. The choice point elimination is the worst op-
timization. There are other optimizations down the pipeline which show a better speed-up.
The best speed up factor of around 83.0% was observed for the test program deriv. The
worst slow-down factor of around 110.9% was observed for the test program calc.

Picture 6: Choice Point Elimination Impact

Bare bone choice point elimination has two advantages. First a list of clauses will not need a
choice point for the last clause so that the corresponding space and time can be saved. Sec-
ond a cut itself does not create a choice point anymore so that again space and time can be
saved. If we sum up these two advantages then all programs should see some speed up, but
this cannot be verified in the present case. We speculate that there are a couple of reasons
for this phenomenon.

One reason is that non-deterministic programs might not enough profit from choice point
elimination. Backtracking has the same effect since it will also force a predicate to remove
choice points. Therefore the early elimination of choice points does not give any advantage
since the choice points are anyway not long living and quickly returned to the Java memory
management by the garbage collection. The choice point elimination only incurs an overhead
here by the additional checks needed.

It should be noted that choice point elimination is an enabler for a couple of subsequent op-
timizations. When we switch off these optimizations, some code branches will be neverthe-
less executed when choice point elimination is on. There is a problem of ordering additional
checks. What we currently do in the current implementation we always first check for deter-
minism and then go through all the enabled subsequent optimizations. Choice point elimina-
tion causes the determinism check to succeed more often. If no subsequent optimization is
enabled, then only overhead is incurred.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 41 of 63

5.3 Discussion Clause Indexing
In this section we will provide a critical discussion of the impact of the clause indexing optimi-
zation. The average speed up factor is around 94.4%. The best speed up factor is seen for
the test program query with 44.4%. We also find test programs with a slowdown. The test
program deriv has the worst slowdown factor of 107.6%. The average speed up factor is not
overwhelming. Nevertheless it should be noted that this optimization is also important, since
it improves the choice point elimination and therefore also the body variable elimination and
the stack frame elimination.

Picture 7: Clause Indexing Impact

When the clause indexing picks a non-variable argument it performs a lookup in a hash ta-
ble. The effort for this lookup can be assumed as a constant effort. The hash table will then
return a smaller clause set compared to the full clause set. The smaller this clause set the
less effort is needed by the Prolog system finding a matching clause. The clause sets are
usually smaller when the hash table has more different keys. As such we can understand our
benchmarking results and the good result for query. The predicate area/2 of the query test
program does show a great number of different keys.

The other test programs then have hash table keys to varying degree. List processing predi-
cates typically profit from hash table keys for ‘[]’ and ‘.’. These keys help making the neces-
sary case decisions faster since lengthy multiple failed unifications are bypassed. We find
here the test programs nrev. The test programs poly and crypt will even make use of clause
indexes that span multiple arguments. In the latter case it is not that list processing keys are
important, rather the hash table key ‘poly’ is of importance.

But we also find the situation of clauses where an argument position consists of a variable.
These clauses are included in all the clause sets of all the hash table keys since a calling
goal might match such a clause. This enlarges the size of the clause set and lowers the im-
pact of clause indexing. If the argument position leads to a trivial hash table the argument
position is skipped and a better argument position is searched. If no better argument position
is found then only overhead is generated.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 42 of 63

5.4 Discussion Body Variable Elimination
In this section we will provide a critical discussion of the impact of the body variable elimina-
tion optimization. The average speed up factor is around 83.9%. The worst slow-down factor
is around 103.5% for the test program crypt. The result is closely followed by the test pro-
gram perfect. The best speed up factor is around 69.3% for the test program deriv. The result
is closely followed by the test program calc.

Picture 8: Body Variable Elimination Impact

The body variable elimination optimization introduces a new instruction. The new instruction
that is added to the intermediate form is “dispose_bind”. This instruction has only an optimiz-
ing effect for deterministic predicates. In case of non-deterministic predicates the instructions
are invoked over and over again without any further effect. As consequence body variable
elimination largely causes only overhead for non-deterministic predicates which can be seen
in the lesser improvement for this group of test programs.

When a clause variable is part of a clause structure which is matched with a non-ground ar-
gument it might get referenced and thus cannot be disposed. Since we do not do display
shrinking, this also prevents reclamation of displays. The last argument of the predicate
concatenate/3 in the test program nrev is for example is structure resulting in this sense. We
guess that these structures resulting arguments cause a considerable overhead which is
seen in the timing diagram. It even affects non-deterministic test programs such as crypt
when they make use of deterministic predicates with structure resulting arguments.

On the other hand the body variable elimination will see to it that non-structure resulting ar-
guments are quickly released. Especially intermediate results that are atomic are detected by
the body variable elimination. This means that for example intermediate number results from
evaluations are quickly made available to the garbage collection of the Java memory man-
agement. Last but not least the destruction structure input arguments will need some place
holders. These place holders will also be reclaimed as soon as the destructed components
are passed to further predicates and the place holders are not anymore needed.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 43 of 63

5.5 Discussion Stack Frame Elimination
In this section we will provide a critical discussion of the impact of the stack frame elimination
optimization. The average speed up factor is around 57.4%. The best speed up factor is
around 12.4% for deriv. deriv and to some extend calc are the only test programs that excel
over the average. A couple of other test programs such as nrev, qsort and perfect saw also
some significant speed up. The later test programs heavily making use of some typical tail
recursive programming patterns. The worst slow-down was for tictac with 100.9%.

Picture 9: Stack Frame Elimination Impact

We can more or less identify a clear trend between the groups of deterministic and non-
deterministic test programs. Test programs from the non-deterministic group show practically
no impact from stack frame elimination. The reason is simple: Stack frame elimination cannot
be applied to a non-deterministic clause since the parent stack frame with the call-site goal is
needed during backtracking. A positive impact might be seen when the test program com-
bines deterministic and non-deterministic predicates. This is for example the case for the
benchmark program query, but the impact is not severe.

But it is not enough to detect the situation that the stack frame can be eliminated and then to
shorten the call chain. We must also see to it that the stack frame is not anymore referenced
by some variable place holders. For this purpose our stack frame elimination also invokes
the disposal of the remaining variables of the calling clause. This disposal corresponds to the
body variable elimination after the last goal of the calling clause, but it is done before the last
call and not only when the last call succeeds. The stack frame elimination is therefore an
additional enabler for body variable elimination.

Unfortunately the body variable elimination before the last call is also subject to the problems
already identified in the previous section. Namely currently the display itself cannot be re-
claimed as long as some variable is still in use. This is for example the case when there are
structure result arguments. What has become known as tail recursion optimization can be
viewed as a combination of our stack frame elimination and our body variable elimination.
Tail recursion optimization is often found in Prolog systems since it is beneficial to perpetual
processes [8]. But our test programs cannot be viewed as testing perpetual processes since
we execute them repeatedly via backtracking.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 44 of 63

5.6 Discussion Head Variable Elimination
In this section we will provide a critical discussion of the impact of the head variable elimina-
tion optimization. The head variable elimination might reduce the number of instructions in
the case of temporary variables. Also the head variable elimination shortens the size of the
display in the case of extra variables. The average speed up factor is around 89.8%. We ob-
served the worst speed-up of 101.8% for the test program query. In the best case we ob-
served a speed up of 71.2% for the test program perfect.

Picture 10: Head Variable Elimination Impact

The benefits of the head variable elimination are quickly eaten up by non-extra temporary
variables. These variables are unified over and over again during backtracking which would
explain the performance penalty for the test program query. On the other hand when such
variables occur in the context of guards there is a clear advantage. This would explain the
positive impact on the DCG calculator since the factor testing works in the form of a digit
guard and eventually also the positive impact on perfect since the between1/3 predicate
makes use of a >/2 guard.

Further there is a geometric argument which can explain some of the positive examples. The
current head variable elimination most often only applies to facts. Facts form the leaves of a
proof tree. The number of leaves depends on the shape of the proof tree. The lowest number
of leaves is found in a linear proof such as found in the concatenate/3 predicate. The number
of leaves of order O(1) relative to the total number of proof steps n. More leaves are found in
a quadratic proof such as rev/2. It is of order O(n0.5). Finally a tree shaped proof such as
sort/3 has the highest number of leaves. It is close to the order of O(n/2).

The head variable elimination is redundant to the body variable elimination. The effect of
sparing a variable place holder allocation is already archived by the body variable elimina-
tion. The body variable elimination would first create and then later dispose the variables
after the unification. Nevertheless the head variable elimination has the advantage of by-
passing these runtime steps and reducing the code already at compile time.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 45 of 63

6 Interpreter Comparison
We conducted a couple of external performance tests. The main indicator that was measured
was the elapsed time for various test cases. The test is documented along the following
lines:

 Test Results: In this section we will present the figures that were obtained from our
test runs. Figures for various Prolog systems will be given.

 Discussion ECLiPSe Prolog: In this section we will provide a critical discussion of
the comparison with the ECLiPSe Prolog system.

 Discussion SWI Prolog: In this section we will provide a critical discussion of the
comparison with the SWI Prolog system.

 Discussion GNU Prolog: In this section we will provide a critical discussion of the
comparison with the GNU Prolog system.

 Discussion Ciao Prolog: In this section we will provide a critical discussion of the
comparison with the Ciao Prolog system.

 Discussion B-Prolog: In this section we will provide a critical discussion of the com-
parison with the B-Prolog system.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 46 of 63

6.1 Test Results
In this section we will present the figures that were obtained from our test runs. Figures for
various Prolog systems will be given. We were using the same machine as for our internal
tests. And we were also using the same Jekejeke Prolog system as for our internal tests. The
Jekejeke Prolog system was run in default mode, which means that all its optimizations are
switched on.

We were comparing the Jekejeke Prolog system to other available Prolog systems. We com-
pared it with 4 freely available Prolog systems and one commercially available Prolog sys-
tem. In particular we compared the following Prolog systems:

 ECLiPSe Prolog: Version 6.1 #181 (x86_64_nt)
 SWI Prolog: SWI-Prolog (Multi-threaded, 64 bits, Version 7.1.11)
 GNU Prolog: GNU Prolog 1.4.4 (64 bits)
 Ciao Prolog: Ciao 1.15-1781 (interpreted mode)
 B-Prolog: B-Prolog Version 8.1 (interpreted mode)

We were running the test suite again two times in a row, and were only measuring the sec-
ond run. The first run would be a cold start with incomplete caching of the predicate refer-
ences. The second run is a warm start which we wanted to measure.

For the Jekejeke Prolog system we invoked the Harness Java Class. For the other Prolog
systems we opened their console and manually started the test harness. B-Prolog and Ciao
Prolog did provide a DOS console whereas the other Prolog systems had a custom console.

The manual start included first consulting the Prolog system specific test harness file and
then invoking the test suite predicate. The test harness file for a Prolog system includes its
predicate for measuring the elapsed time.

The test harness file for a Prolog system also includes the statements to read the common
file and the test programs. Not in all Prolog systems this was possible via the consult/1 predi-
cate. For the GNU Prolog system we had to refer to the include/1 predicate.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 47 of 63

The absolute raw results measured in milliseconds are displayed in the table below:

Table 4: Absolute Detailed Interpreter Results (ms)
Test ECLiPSe SWI gprolog Ciao B-Prolog Jekejeke

nrev 59 156 269 405 655 720
crypt 94 515 483 141 905 624
deriv 105 249 312 1'841 842 391
poly 94 297 312 109 780 502
qsort 94 296 375 437 1'030 779
tictac 171 375 670 312 1'076 969
queens 94 405 530 124 1'186 739
query 265 967 797 468 1'919 985
mtak 109 281 405 94 1'435 676
perfect 658 328 359 234 967 527
calc 140 343 422 1'245 1'108 492
Total 1'883 4'212 4'934 5'410 11'903 7'404

The picture below shows the total results relative to the Jekejeke Prolog system:

Picture 11: Relative Interpreter Results

Some of the tested Prolog systems do not distinguish between compiled and interpreter
mode. We find SWI-Prolog and Jekejeke Prolog in this category. Some of the tested Prolog
systems are declared as compilers. We find ECLiPSe Prolog and GNU Prolog in this catego-
ry. For these systems there was not much choice in how to execute the benchmarks.

Some of the tested Prolog systems provide both compiled and interpreted mode. We find B-
Prolog and Ciao Prolog in this category. For these systems we choose the interpreted mode
to run our benchmarks. As the bar chart shows, there is no clear divide between compiled
and interpreted. But the fastest Prolog system here is a compiled one.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 48 of 63

6.2 Discussion ECLiPSe Prolog
In this section we will provide a critical discussion of the comparison with the ECLiPSe
Prolog system. The ECLiPSe Prolog system is the only compiler that we have included in our
external benchmark. The average speed up factor compared to Jekejeke Prolog is around
25.4%. The worst slow down factor was around 124.9% for perfect. The best speed up factor
is around 8.2% for nrev.

Picture 12: ECLiPSe Prolog Performance

History ECRC, Sepia, Cisco
WAM Code, ECLiPSe Object Code
C, Prolog

Multi Argument Indexing? Crypt, Query
Inline Choice Points? Tictac

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 49 of 63

6.3 Discussion SWI Prolog
In this section we will provide a critical discussion of the comparison with the SWI Prolog
system. The SWI Prolog system is the fastest non-compiler that we have included in our ex-
ternal benchmark. The average speed up factor compared to Jekejeke Prolog is around
56.9%. The worst slow down factor was around 98.2% for query. The best speed up factor is
around 21.7% for nrev.

Picture 13: SWI Prolog Performance

The SWI Prolog system is not the only system that cannot apply an optimization to query. All
of the tested Prolog systems seem to have problems with this test program. This is very
astonishing since it is based on a predicate lookup which is very well amenable to first argu-
ment indexing. A further test program that might profit from indexing is crypt. For this test
program almost all Prolog systems show also a problem. Only the B-Prolog system and the
Ciao Prolog do not suffer extremely in this case. The Jekejeke Prolog system on the other
hand will use a multi-argument index for the predicate sum2/4 in crypt.

The separation of the speed ups into the two groups deterministic and non-deterministic is
perfect for SWI Prolog. Unfortunately the calc example does not show some special speed
up over the average. SWI Prolog does perform a DCG expansion similar to GNU Prolog. But
SWI Prolog places additional unification steps subsequent to DCG actions into the body of a
grammar rule to make it steadfast similar to the Jekejeke Prolog system. This could affect the
performance of SWI Prolog for the calc test program.

The SWI Prolog system speed-up shows a modest span of 86.6%. A smaller span is only
found for the GNU Prolog system with 58.7%. The biggest span is found for the SICStus
Prolog system with 378.2%. The variance of the system speed-up shows a similar picture,
means that we do have similar clustering on both sides of the speed spectrum for all Prolog
systems. The SWI Prolog system speed-up shows again a modest variance of 22.9%. A
smaller variance is only found for the GNU Prolog system with 16.1%. The biggest variance
is found for the SICStus Prolog system with 138.5%.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 50 of 63

6.4 Discussion GNU Prolog
In this section we will provide a critical discussion of the comparison with the GNU Prolog
system. The GNU Prolog ranks second in our comparison of interpreters. The average speed
up factor relative to the Jekejeke Prolog system is around 66.6%. This is a little bit worse
than the average speed up factor of SWI Prolog. The worst speed up factor is around 85.8%
for query. The best speed up factor is around 37.4% for nrev.

Picture 14: GNU Prolog Performance

GNU Prolog and SWI Prolog are not only similar what concerns the average speed up factor.
But the Prolog systems also share a similar pattern of speed ups among the test programs.
We only see a considerable difference in the test programs tictac, queens and mtak. The
SWI Prolog system shows a significantly better relative performance for these test programs.
On the other hand the relative performance for the test program query is better.

Most of the test programs that are better than the average compared to Jekejeke Prolog are
deterministic. Therefore we might conclude that GNU Prolog has a better handling of deter-
ministic predicates than we do. In particular we find those test programs that have structure
resulting arguments above the average. In our PLM based architecture the cost for structure
resulting arguments is the variable instantiation and then a dispose instruction that executes
to no avail. In a WAM based architecture the structure is simply newly allocated.

Concerning the DCG expansion the GNU Prolog system is able to merge terminals into the
head like SWI-Prolog can do. But contrary to SWI Prolog it does not put additional unification
steps inside the grammar rules for DCG actions. In theory this should give a relative speed
advantage. But we do not find such a result, which is more astonishing since query performs
better. We can only conclude that query performs better because of faster arithmetic and not
because of faster indexing. Since the better indexing would be also seen in the merging of
terminals into the head for the calc test program.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 51 of 63

6.5 Discussion Ciao Prolog
In this section we will provide a critical discussion of the comparison with the Ciao Prolog
system. The Prolog system shows an average slowdown very similar to the slowdown of
SICStus Prolog. The average slowdown is around 73.1%. The best speed up is seen for the
mtak test program with around 13.9%. The worst slow-down is seen for the deriv test pro-
gram with around 470.8%.

Picture 15: Ciao Prolog Performance

t.b.d.

The relatively good performance of tictac is a highlight. The test program demands efficient
deep unification. This is an area that is not yet covered by any of our optimizations. On the
downside we find the deriv test program. Here our own analysis shows that the deriv test
program profits most from stack frame elimination. We might thus speculate that eventually
the Ciao Prolog system might need some improvement in stack frame elimination.

The problem with calculate can be also due to issues with the DCG translation. The Ciao
Prolog system uses the ‘C’/3 construct to translate terminals. It is the only system besides
our system that makes use of this construct. Our own analysis shows that this DCG transla-
tion can profit from head variable elimination, especially temporary variables that can speed
up guards. This is consistent with the problem of the mtak test program which makes also
use of a guard.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 52 of 63

6.6 Discussion B-Prolog
In this section we will provide a critical discussion of the comparison with the B-Prolog sys-
tem. The newest release of the B-Prolog system is still slower than the former release 7.5#8
of the B-Prolog system. The average slow-down factor is around 160.8%. The test program
with the least slow down factor is nrev with around 91.0%. The test program with the worst
slow down factor is calc with around 225.2%.

Picture 16: B-Prolog Performance

The pattern is much more balanced than the pattern for the other Prolog systems. Many of
the test programs do not perform very differently from the average. What features could ex-
plain this behaviour? We cannot attribute this performance to jumbo instructions. Both B-
Prolog [11] and SICStus Prolog [12] are known to do the merging and specialization of in-
structions. But we have the problem that this technology probably only applies to compiled
code and not to interpreted code.

B-Prolog is based on TOAM which does eager environment allocation. The eager environ-
ment allocation leads to a degradation in the case of mtak [10]. Further the last call optimiza-
tion in the TOAM is directly targeted towards reusing the eagerly created environments [11].
The optimization seems to work well when there are fewer goals between the head and the
last call. Maybe this explains the better performance for crypt and qsort.

The performance of the calc test program should be much better. B-Prolog does not place
additional unification steps subsequent to DCG actions into the body of a grammar rule to
make it steadfast. Therefore it should not be subject to the corresponding performance pen-
alty. But it does not integrate terminals into the head. Instead it handles these terminals via a
list equation. This could give a small performance penalty again if list equation is not opti-
mized away since it would prevent first argument indexing.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 53 of 63

7 Appendix Harness Listings
The full source code of the Java classes and the Prolog texts for the test harness is given.
The following source code has been included:

 Common Files
 Jekejeke Prolog Harness
 ECLiPSe Prolog Harness
 SWI Prolog Harness
 GNU Prolog Harness
 Ciao Prolog Harness
 B-Prolog Harness

7.1 Common Files
The only common file consists of a Prolog text with the test suite and a Prolog text with utili-
ties for the measurement of the elapsed time and of the garbage collection time.

For the common files there are the following sources:

 suite.p: The Prolog text that defines the test suite.
 util.p: The Prolog text for the testing utilities.

Prolog Text suite
/**
* The Prolog text that defines the test suite.
*
* Copyright 2014, XLOG Technologies GmbH, Switzerland
* Jekejeke Prolog 1.0.3 (a fast and small prolog interpreter)
*/

:- ensure_loaded('util.p').

:- ensure_loaded('nrev.p').
:- ensure_loaded('crypt.p').
:- ensure_loaded('deriv.p').
:- ensure_loaded('poly.p').
:- ensure_loaded('qsort.p').
:- ensure_loaded('tictac.p').
:- ensure_loaded('queens.p').
:- ensure_loaded('query.p').
:- ensure_loaded('mtak.p').
:- ensure_loaded('perfect.p').
:- ensure_loaded('calc.p').

suite :-
bench(3001, dummy, _, _),
bench(6001, nrev, T1, G1),
bench(301, crypt, T2, G2),
bench(30001, deriv, T3, G3),
bench(61, poly, T4, G4),
bench(6001, qsort, T5, G5),
bench(11, tictac, T6, G6),
bench(16, queens, T7, G7),

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 54 of 63

bench(3001, query, T8, G8),
bench(31, mtak, T9, G9),
bench(16, perfect, T10, G10),
bench(20001, calc, T11, G11),
T is T1+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11,
G is G1+G2+G3+G4+G5+G6+G7+G8+G9+G10+G11,
write('Total'),
show(T, G), nl.

Prolog Text util
/**
* The Prolog text for the testing utilities.
*
* Copyright 2010-2014, XLOG Technologies GmbH, Switzerland
* Jekejeke Prolog 0.9.0 (a fast and small prolog interpreter)
*/

for(_).
for(N) :- N > 0, M is N - 1, for(M).

:- meta_predicate test(?,0).
test(N, X) :- for(N), call(X), fail.
test(_, _).

show(T, G) :-
write('\tin '),
write(T),
write('\t('),
write(G),
write(' gc) ms'), nl.

:- meta_predicate bench(?,0,?,?).
bench(N, X, T, G) :-

uptime(T1), gctime(G1),
test(N,X),
uptime(T2), gctime(G2),
T is T2 - T1,
G is G2 - G1,
write(X),
show(T,G).

dummy.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 55 of 63

7.2 Jekejeke Prolog Harness
We find a Prolog text that will consult the common file, the test programs and further define
the predicate for the elapsed runtime and the garbage collection time.

For the Jekejeke Prolog harness there are the following sources:

 jekejeke.p: The Prolog text.

Prolog Text jekejeke
/**
* Jekejeke Prolog code for the test harness.
*
* Copyright 2010-2014, XLOG Technologies GmbH, Switzerland
* Jekejeke Prolog 0.9.0 (a fast and small prolog interpreter)
*/

% ?- ensure_loaded('<base>/jekejeke.p').

uptime(X) :-
statistics(uptime, X).

gctime(X) :-
statistics(gctime, X).

:- ensure_loaded('suite.p').

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 56 of 63

7.3 ECLiPSe Prolog Harness
We find a Prolog text that will consult the common file, the test programs and further define
the predicate for the elapsed runtime and the garbage collection time. Replace the <base>
by the test program directory.

For the ECLiPSe Prolog harness there are the following sources:

 eclipse.p: The Prolog text.

Prolog Text eclipse
/**
* ECLiPSe Constraint Logic Programming System code for the test harness.
*
* Copyright 2011-2014, XLOG Technologies GmbH, Switzerland
* Jekejeke Prolog 0.9.0 (a fast and small prolog interpreter)
*/

% ?- ensure_loaded('<base>/eclipse.p').

uptime(X) :-
statistics(times, [_,_,T]),
X is round(T*1000).

gctime(X) :-
statistics(gc_time, T),
X is round(T*1000).

:- use_module(library(iso)).

:- ensure_loaded('suite.p').

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 57 of 63

7.4 SWI Prolog Harness
We find a Prolog text that will consult the common file, the test programs and further define
the predicate for the elapsed runtime and the garbage collection time. Replace the <base>
by the test program directory.

For the SWI Prolog harness there are the following sources:

 swi.p: The Prolog text.

Prolog Text swi
/**
* SWI Prolog code for the test harness.
*
* Copyright 2011-2014, XLOG Technologies GmbH, Switzerland
* Jekejeke Prolog 0.9.0 (a fast and small prolog interpreter)
*/

% ?- ensure_loaded('<base>\\swi.p').

uptime(X) :-
statistics(cputime, T),
X is round(T*1000).

gctime(T) :-
statistics(garbage_collection, [_,_,T|_]).

:- set_prolog_flag(double_quotes, codes).

:- ensure_loaded('suite.p').

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 58 of 63

7.5 GNU Prolog Harness
We find a Prolog text that will consult the common file, the test programs and further define
the predicate for the elapsed runtime. Replace the <base> by the test program directory.
Measurement of the garbage collection time is not possible.

For the GNU Prolog testing we need a special version of the suite.p Prolog text that uses
include/1 instead of ensure_loaded/1 and we also need a special version of the util.p Prolog
text that goes without meta_predcate/1 declarations.

For the GNU Prolog harness there are the following sources:

 gprolog.p: The Prolog text.
 suiteinc.p: The Prolog text of the modded suite.p.
 utilinc.p: The Prolog text of the modded util.p.

Prolog Text gprolog
/**
* GNU Prolog code for the test harness.
*
* Copyright 2010-2014, XLOG Technologies GmbH, Switzerland
* Jekejeke Prolog 0.8.6 (a fast and small prolog interpreter)
*/

% ?- consult('<base>\\gprolog.p').

uptime(X) :-
real_time(X).

gctime(0).

:- include('suiteinc.p').

Prolog Text suiteinc
/**
* The Prolog text that defines the test suite.
* Version that uses include instead of ensure_loaded.
*
* Copyright 2014, XLOG Technologies GmbH, Switzerland
* Jekejeke Prolog 1.0.3 (a fast and small prolog interpreter)
*/

:- include('utilinc.p').

:- include('nrev.p').
:- include('crypt.p').
:- include('deriv.p').
:- include('poly.p').
:- include('qsort.p').
:- include('tictac.p').
:- include('queens.p').
:- include('query.p').
:- include('mtak.p').
:- include('perfect.p').

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 59 of 63

:- include('calc.p').

suite :-
bench(3001, dummy, _, _),
bench(6001, nrev, T1, G1),
bench(301, crypt, T2, G2),
bench(30001, deriv, T3, G3),
bench(61, poly, T4, G4),
bench(6001, qsort, T5, G5),
bench(11, tictac, T6, G6),
bench(16, queens, T7, G7),
bench(3001, query, T8, G8),
bench(31, mtak, T9, G9),
bench(16, perfect, T10, G10),
bench(20001, calc, T11, G11),
T is T1+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11,
G is G1+G2+G3+G4+G5+G6+G7+G8+G9+G10+G11,
write('Total'),
show(T, G), nl.

Prolog Text utilinc
/**
* The Prolog text for the testing utilities.
* Version that doesn't use meta_predicate declarations.
*
* Copyright 2014, XLOG Technologies GmbH, Switzerland
* Jekejeke Prolog 1.0.3 (a fast and small prolog interpreter)
*/

for(_).
for(N) :- N > 1, M is N - 1, for(M).

test(N, X) :- for(N), call(X), fail.
test(_, _).

show(T, G) :-
write('\tin '),
write(T),
write('\t('),
write(G),
write(' gc) ms'), nl.

bench(M, X, T, G) :-
uptime(T1),
gctime(G1),
test(M, X),
uptime(T2),
gctime(G2),
T is T2 - T1,
G is G2 - G1,
write(X),
show(T, G).

dummy.

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 60 of 63

7.6 Ciao Prolog Harness
We find a Prolog text that will consult the common file, the test programs and further define
the predicate for the elapsed runtime and the garbage collection time. Replace the <base>
by the test program directory.

For the Ciao Prolog harness there are the following sources:

 ciao.p: The Prolog text.

Prolog Text ciao
/**
* Ciao code for the test harness.
* Use ensure_loaded/1 on toplevel so that code will be interpreted.
*
* Copyright 2011-2014, XLOG Technologies GmbH, Switzerland
* Jekejeke Prolog 0.9.0 (a fast and small prolog interpreter)
*/

% :- ensure_loaded('<base>\\ciao.p').

uptime(Y) :-
statistics(walltime, [X|_]),
Y is round(X).

gctime(S) :-
statistics(garbage_collection, [_,_,T]),
S is round(T).

:- ensure_loaded('suite.p').

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 61 of 63

7.7 B-Prolog Harness
We find a Prolog text that will consult the common file, the test programs and further define
the predicate for the elapsed runtime and the garbage collection time. Replace the <base>
by the test program directory.

For the B-Prolog harness there are the following sources:

 bprolog.p: The Prolog text.

Prolog Text bprolog
/**
* B-Prolog code for the test harness.
* Since consult/1 is used code will be interpreted.
*
* Copyright 2010-2014, XLOG Technologies GmbH, Switzerland
* Jekejeke Prolog 0.9.0 (a fast and small prolog interpreter)
*/

% ?- set_prolog_flag(redefine_builtin, on).
% ?- consult('<base>\\bprolog.p').

uptime(X) :-
statistics(runtime, [X|_]).

gctime(X) :-
statistics(gc_time, X).

ensure_loaded(X) :-
atom_concat('<base>\\', X, Y),
consult(Y).

:- ensure_loaded('suite.p').

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 62 of 63

Pictures

Picture 1: Memory Organization ...6
Picture 2: Incremental Relative Strategies Results ...39
Picture 3: Choice Point Elimination Impact ...40
Picture 4: Clause Indexing Impact ..41
Picture 5: Body Variable Elimination Impact ...42
Picture 6: Stack Frame Elimination Impact ...43
Picture 7: Head Variable Elimination Impact...44
Picture 8: Relative Interpreter Results ..47
Picture 9: ECLiPSe Prolog Performance ..48
Picture 10: SWI Prolog Performance..49
Picture 11: GNU Prolog Performance...50
Picture 12: Ciao Prolog Performance ...51
Picture 13: B-Prolog Performance ..52
Picture 14: Pythagorean Theorem..14
Picture 15: Search Tree Excerpt...16
Picture 16: 4 Queens..17

Tables

Table 1: Iterations of the Test Programs...10
Table 2: Compared Optimization Settings ..38
Table 3: Absolute Detailed Strategies Results (ms)..39
Table 4: Absolute Detailed Interpreter Results (ms)..47

Jan Burse Benchmark Core Results XLOG Technologies GmbH

August 27, 2015 jekejeke_bench_core_2015_05_04_e.docx Page 63 of 63

References

[1] Trigg, W. C. (1985): Mathematical Quickies, Dover Publications, Inc., New York,
1985

[2] Warren, D.H.D. (1983): Applied Logic – Its Use and Implementation as a Program-
ming Tool, Technical Note 290, SRI International, 1983

[3] Haygood, R. (1989): A Prolog Benchmark Suite for Aquarius, Computer Science Di-
vision, University of California Berkley, April 30, 1989

[4] Warren, D.H.D. (1983): An Abstract Prolog Instruction Set, Technical Note 309, SRI
International, October, 1983

[5] Aït-Kaci, H. (1991): Warren’s Abstract Machine, A Tutorial Reconstruction, ICLP’91
Pre-Conference Tutorial, 1991

[6] Bruynooghe M., Janssens, G. and Kagedal, A. (1996): Live-structure Analysis for
Logic Programming Languages with Declarations, Department of Computer Science,
Leuven, May 6, 1996

[7] Hodas, J.S. (1990): From the PLM to the WAM and Beyond, University of Pennsyl-
vania, Philadelphia, Fall 1990.

[8] Wielemaker, J. and Neumerkel, U. (2008): Precise Garbage Collection in Prolog,
Proceedings of CICLOPS-08, Udine, Italy, 2008

[9] Zhou, N.-F. (2000): Garbage Collection in B-Prolog, In Proc. of the First Workshop
on Memory Management in Logic Programming Implementations, 2000

[10] Demoen, B. and Nguyen, P.-L. (2008): Environment Reuse in the WAM, International
Conference on Logic Programming, Udine, Italy, 2008

[11] Zhou, N.-F. (2007): A Register-free Abstract Prolog Machine with Jumbo Instructions,
International Conference on Logic Programming, Porto, Portugal, 2007

[12] Nassen, H. (2000): Optimizing the SICStus Prolog Virtual Machine Instruction Set,
Master's thesis, SICS Technical Report T2001-01

[13] Russell, S. and Norvig, P. (2010): Artificial Intelligence, A Modern Approach, Third
Edition, Pearson Education, Inc.

[14] M. V. Hermenegildo et al. (2010): An Overview of Ciao and its Design Philosophy,
University of Madrid, School of Computer Science

