
Jekejeke Runtime Compliance
Version 1.1.3, May 1st, 2016

XLOG Technologies GmbH

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 2 of 30

Jekejeke Prolog

Runtime Library 1.1.3
Compliance Results

Author: XLOG Technologies GmbH
Jan Burse
Freischützgasse 14
8004 Zürich
Switzerland

Date: May 1st, 2016
Version: 0.23

Participants: None

Warranty & Liability
To the extent permitted by applicable law and unless explicitly otherwise agreed upon, XLOG
Technologies GmbH makes no warranties regarding the provided information. XLOG Tech-
nologies GmbH assumes no liability that any problems might be solved with the information
provided by XLOG Technologies GmbH.

Rights & License
All industrial property rights regarding the information - copyright and patent rights in particu-
lar - are the sole property of XLOG Technologies GmbH. If the company was not the origina-
tor of some excerpts, XLOG Technologies GmbH has at least obtained the right to repro-
duce, change and translate the information.

Reproduction is restricted to the whole unaltered document. Reproduction of the information
is only allowed for non-commercial uses. Small excerpts can be used if properly cited. Cita-
tions must at least include the document title, the product family, the product version, the
company, the date and the page. Example:

… Defined predicates with arity>0, both static and dynamic, are indexed on
the functor of their first argument [1, p.17] ...

[1] Language Reference, Jekejeke Prolog 0.8.1, XLOG Technologies GmbH,
Switzerland, February 22nd, 2010

Trademarks
Jekejeke is a registered trademark of XLOG Technologies GmbH.

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 3 of 30

Table of Contents
1 Introduction ..5

2 Discrepancies ..6
2.1 Package Control..8
2.2 Package Consult ...13
2.3 Package Arithmetic..15
2.4 Package Structure ...18
2.5 Package Stream..20

3 Omissions..22
3.1 Syntax Omissions..22
3.2 Predicate Omissions..22
3.3 Evaluable Function Omissions...22

4 Test Setup ...23
4.1 Test Scope ..24
4.2 Test Method ..25
4.3 Test Sources ...26
4.4 Test Harness ...28
4.5 Test Cases ..29

Pictures ..30

Tables ..30

References...30

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 4 of 30

Change History
Jan Burse, October 2nd, 2010, 0.1:
 Initial version.
Jan Burse, November 14th, 2010, 0.2:
 Arithmetic re-evaluated and trigonometric operation test cases introduced.
Jan Burse, November 18th, 2010, 0.3:
 Atom and number syntax test cases updated.
Jan Burse, November 28th, 2010, 0.4:
 Character test cases added.
Jan Burse, December 2nd, 2010, 0.5:
 Steam control test cases added.
Jan Burse, January 2nd, 2011, 0.6:
 Omissions section updated and sections reordered.
Jan Burse, April 15th, 2011, 0.7:
 Omissions and discrepancies updated to version 0.8.8.
Jan Burse, Mai 15th, 2011, 0.8:
 Discrepancies updated to version 0.8.9.
Jan Burse, June 15th, 2011, 0.9:
 Byte I/O test cases introduced.
Jan Burse, August 15th, 2011, 0.10:
 String test cases enhanced and terminal based diagnosis application introduced.
Jan Burse, August 20th, 2011, 0.11:
 Draft technical corrigendum 2 test cases introduced and syntax omissions documented.
Jan Burse, September 23th, 2011, 0.12:
 New setup_call_cleanup/3 test cases introduced.
Jan Burse, November 4th, 2011, 0.13:
 Portable test helper introduced and results updated to version 0.9.2.
Jan Burse, April 5th, 2012, 0.14:
 Results updated to version 0.9.3.
Jan Burse, June 5th, 2012, 0.15:
 Results updated to version 0.9.4.
Jan Burse, October 6th, 2012, 0.16:
 New simplify glitch discrepancy documented.
Jan Burse, November 20th, 2012, 0.17:
 Results updated to version 0.9.7.
Jan Burse, December 13th, 2013, 0.18:
 Results updated to version 0.9.12.
Jan Burse, July 23rd, 2014, 0.19:
 Results updated to version 1.0.3.
Jan Burse, August 11th, 2014, 0.20:
 Test results moved to discrepancies section and test cases combined into bigger files.
Jan Burse, January 24th, 2016, 0.21:
 Test results adapted to new automatic bridging and tunnelling.
Jan Burse, March 4th, 2016, 0.22:
 Results updated to version 1.1.2.
Jan Burse, May 1st, 2016, 0.23:
 Document moved to development environment and shared modules used.

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 5 of 30

1 Introduction
This document describes some compliance results for the Jekejeke Prolog system.

 ISO Core Discrepancies: We will present and discuss the findings.

 ISO Core Omissions: We will list the unimplemented requirements.

 Test Setup: We explain our test scope, method and sources.

 Appendix Diagnosis Listings: We will list the diagnosis terminal application.

 Appendix Test Case Listings: We will list the test cases and their test results.

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 6 of 30

2 Discrepancies
We will present and discuss the findings. We gathered 862 test cases from the standard ex-
amples and through our own development. In the average around 7.8% of the test cases
failed. Relatively seen the most test cases failed in the arithmetic theory with 14.9%. The
fewest test cases failed in the structure theory with 3.3%. The results are very promising,
since they show that we would not have a very long path ahead for full ISO compliance.

Picture 1: Number of Discrepancies

There were no test case failures which we could not explain. We have analysed the failures
and come up with a set of findings. For each finding we have compared the Jekejeke Prolog
behaviour with the behaviour mandated by the ISO standard. We have then classified the
Jekejeke Prolog behaviour into the categories enhancement or limitation. In summary the
following findings could be collected from our testing:

Table 1: Identified Findings
Theory Title Classification

Control Predicate Visibility Enhancement
Error Message Limitation
Clean-up Safety Enhancement
Simplify Glitch Limitation

Consult Predicate Sealing Enhancement
Arithmetic Narrower Arithmetic Limitation

Broader Arithmetic Enhancement
Structure Array Access Enhancement
Stream Stream Property Enhancement

The findings that were classified a limitation need further work by us. They will be probably
fixed in an upcoming release of Jekejeke Prolog. The findings that were classified an en-
hancement will only be worked on, when we have introduce an ISO compatibility flag. This
flag will then either allow the Jekejeke Prolog specific behaviour or it will revert to the ISO
compliant behaviour. The ISO compliant behaviour will also need further work by us.

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 7 of 30

We will present our findings grouped according to our packages:

 Package Control
 Package Consult
 Package Arithmetic
 Package Structure
 Package stream

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 8 of 30

2.1 Package Control
The below table shows a breakdown of the test results for the control package:

Table 2: Control Discrepancies
Module Cases Ok Nok Comment

pred 7 6 1 Predicate Visibility
kernel 40 40 0
logical 68 63 5 Simplify Glitch

Error Message
signal 37 31 6 Clean-up Safety
Total 152 140 12

The main findings for the control package were:

 Predicate Visibility
 Error Message
 Clean-up Safety
 Simplify Glitch

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 9 of 30

Predicate Visibility

Classification Enhancement

Discrepancy The ISO standard requires that the built-in current_predicate/1 finds all
predicates, static or dynamic, with or without clauses that were defined by
the user. Such a predicate might have some applications in a listing/0 predi-
cate that should only show the user defined clauses.

In our implementation the built-in is capable of enumerating and checking all
possibly qualified predicates that are visible from the call-site. This allows
for example checking the existence and accessibility of a predicate before it
is called, accessed or modified.

In our implementation the visibility of a predicate depends on its reachability
via import and export and on its visibility attributes. Non-qualified predicates
are visible everywhere. In as far there is no difference between user and
non-user defined predicates.

Integration /
Elimination

The ISO module standard defines a predicate current_visible/1. The inten-
tion of our built-in current_predicate/1 is to function similarly to this predi-
cate. The predicate cannot enumerate private predicates or package local
predicates when the call-site is a different package.

For an unrestricted enumeration and checking we provide a module in the
development environment. The module is inspection/provable and the pred-
icate current_provable/1 does the job.

Failed Test
Cases

ISO 8.8.2.4, ISO 2

Related Find-
ings

-

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 10 of 30

Error Message

Classification Limitation

Discrepancy The Jekejeke Prolog provides the same type errors as ISO Prolog. But
Jekejeke Prolog only shows the sub term as a culprit when a type error oc-
curs. But the ISO examples usually show the full term as a culprit. Further if
a predicate has output parameters, we do not check their types. Instead we
simply compute the output value and leave it to unification.

There are further problems with our error handling. The ISO core standard
does not really mandate an order in checking the predicate arguments, but
some of the examples imply a certain order. We should respect the same
order in our test cases.

Also the ISO core standard provides a couple of internal data types that are
derived from the usual Prolog data types. Among these we find the charac-
ter which is an atom of length 1, and the byte which is an integer in the
range 0 … 255. We do not yet correctly check these types, we first check for
atom resp. integer, and then for the additional condition, yielding two differ-
ent errors. The ISO core standard demands only one error.

Integration /
Elimination

One reason for our simpler error messages is implementation effort and
execution performance. Sub term error messages are easier to generate on
the fly. They also give better information than argument based error mes-
sages. Omitting checking given output values results in higher execution
speed.

Concerning the predicate arguments, we should check the error handling in
all our predicates, and align it in case the usual order is not respected.

Further the error checking for character and byte should be fixed, so that it
does not split up into an atom resp. integer checking, and a further addition-
al condition checking.

Failed Test
Cases

ISO 7.8.3.4, ISO 6b
ISO 7.8.3.4, ISO 13
ISO 7.8.3.4, ISO 14
ISO 7.8.3.4, ISO 15
ISO 8.14.3.4, ISO 4
ISO 8.14.3.4, ISO 8
ISO 8.14.3.4, ISO 10
Corr.2 8.15.4.4, XLOG 3
Corr.2 8.15.4.4, XLOG 4
ISO 9.1.7, ISO 10
ISO 9.1.4, XLOG 5
ISO 9.1.7, ISO 5
ISO 9.1.7, ISO 20
ISO 9.1.7, ISO 28
ISO 9.1.7, ISO 9
Corr.2 9.1.3, XLOG 4
ISO 9.1.7, ISO 34
ISO 9.3.1.4, ISO 5
ISO 9.3.2.4, ISO 4

ISO 9.3.3.4, ISO 4
Corr.2 9.3.14.4, XLOG 3
Corr.2 9.3.12.4, XLOG 4
ISO 9.3.5.4, ISO 5
ISO 9.3.6.4, ISO 6
ISO 9.4.3.4, ISO 6
ISO 8.7.1.4, XLOG 1
ISO 8.7.1.4, XLOG 3
ISO 8.7.1.4, XLOG 4
ISO 8.7.1.4, XLOG 5
Corr.2 9.3.9, XLOG 1
ISO 8.5.3.4, ISO 9
ISO 8.5.1.4, ISO 16
ISO 8.5.1.4, ISO 17
ISO 8.5.2.4, ISO 11
ISO 8.16.1.4, ISO 7
Corr.2 8.4.4.4, XLOG 7
Corr.2 8.4.3.4, XLOG 6
ISO 8.13.3, ISO 4

Related Find-
ings

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 11 of 30

Clean-up Safety

Classification Enhancement

Discrepancy The behaviour of the predicate setup_call_cleanup/3 is described in [10].
Our implementation is based on a dissection of this behaviour into the sys-
tem predicates sys_atomic_call/1 and sys_on_cleanup/1. The implementa-
tion needs the newly introduced cutter mechanism.

During the implementation here and then we did not closely follow the ISO
proposal. At the moment the following behavioural discrepancies are known:

 Clean-up pre-validation, not implemented.
 Clean-up exception accumulation, not part of ISO proposal.
 Failure of clean-up throws exception, not part of ISO proposal.

Integration /
Elimination

Some of the discrepancies have simple workarounds. If pre-validation is
needed one could invoke setup_call_cleanup/3 as follows:

?- setup_call_cleanup((S,
(var(C) -> sys_throw_error(instantiation_error);
\+ callable(C) -> sys_throw_error(

type_error(callable, C));
true)), G, C).

If no exception accumulation is needed one could invoke the
setup_call_cleanup/3 as follows:

throw_cause(cause(_,E)) :- !, throw_cause(E).
throw_cause(E) :- throw(E).

?- catch(setup_call_cleanup(S, G, C), E, throw_cause(E))).

If no exception on failure is needed one could invoke the
setup_call_cleanup/3 as follows:

?- setup_call_cleanup(S,G, (C;true)).

Failed Test
Cases

WG17 N215, ISO 3
WG17 N215, ISO 25
WG17 N215, ISO 26

WG17 N215, ISO 27
WG17 N215, ISO 9
WG17 N215, XLOG 12

Related Find-
ings

-

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 12 of 30

Simplify Glitch

Classification Limitation

Discrepancy Since release 0.9.4 of Jekejeke Prolog the interpreter features a simplifica-
tion framework. Simplification is directly applied after the expansion of a
goal or term. It can be customized by the end-user.

It now happens that certain rules can cause problems in the semantics of
the if-then-else. This happens whenever the simplification generates a free
standing (->)/2 term inside a (;)/2 context. The following innocently looking
simplification rule already causes this problem:

A, true ~~> A

When the simplification acts on (! -> fail), true; true, it will turn the goal into !
-> fail; true. The former goal succeeds whereas the latter goal fails. The
scope of the local cut inside the (->)/2 is broadened by the simplification,
which causes the discrepancy in the semantics.

Integration /
Elimination

The simplification is vital to the Jekejeke Runtime and Jekejeke Minlog. It is
internally used to simplify DCG grammar rules and to simplify forward chain-
ing handlers. So we will need to keep this feature.

We did not yet identify all corners where such a glitch can happen. And for
those cases where we already see the glitch, we do not yet have a definite
concept to fix the simplification rules. For the already mentioned simplifica-
tion rule a fix would be eventually:

A, true ~~> A if A \= (_ -> _)

But this also prevents simplification when the potential free standing (->)/2 is
not inside a (;)/2 context. Thus reducing the number of simplified goals and
therefor lowering the benefit of simplification.

Failed Test
Cases

ISO 7.8.8.4, ISO 9

Related Find-
ings

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 13 of 30

2.2 Package Consult
The below table shows a breakdown of the test results for the consult package:

Table 3: Consult Discrepancies
Module Cases Ok Nok Comment

file 12 6 6 Error Message
Predicate Sealing

data 45 42 3 Predicate Sealing
apply 18 16 2 Error Message
dcg 56 56 0
Total 131 120 11

The new main findings for the control package were:

 Predicate Sealing

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 14 of 30

Predicate Sealing

Classification Enhancement

Discrepancy The ISO standard requires the existence of a multi-file directive. But it
leaves open how such a directive is implemented. To allow separate compi-
lation we only allow predicate attribute transitions from undefined to defined,
and we warn so that for multi-file predicates different Prolog text mentions
repeat all the predicate attributes.

We also apply this approach to syntax operators. As a side effect the level
or mode of a syntax operator cannot be changed when it has been set once
without first abolishing it. The same holds for example for the comma opera-
tor (‘,’) as well, but the error message is different than what has recently
been defined by the ISO standard.

To prevent the end-user from modifying non-user predicates we have de-
vised the more general rule that non-multi-file predicates cannot be modified
in multiple Prolog texts. Again the error message is different than what has
recently been defined by the ISO standard.

Integration /
Elimination

We value the different error messages as non-severe. They express the
different first principles that cause the same test cases to fail as the ISO
standard requires.

On the other hand in our implementation the end-user is less free to modify
attributes of syntax operators and predicates. Further in our implementation
the end-user is forced to mark a predicate as multi-file if he wants to add
clauses from within different Prolog texts.

Failed Test
Cases

ISO 8.14.3.4, ISO 4
Corr.2 6.3.4.3, ISO 3
ISO 8.9.1.4, ISO 7

ISO 8.9.2.4, ISO 7
ISO 8.9.4.4, ISO 5

Related Find-
ings

t.b.d.

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 15 of 30

2.3 Package Arithmetic
The below table shows a breakdown of the test results for the arithmetic package:

Table 4: Arithmetic Discrepancies
Module Cases Ok Nok Comment

basic 53 43 10 Narrower Arithmetic
round 32 28 4
trigo 51 42 9 Broader Arithmetic
bitwise 21 20 1
compare 38 33 5
Total 195 166 29

The new main findings for the arithmetic package were:

 Narrower Arithmetic
 Broader Arithmetic

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 16 of 30

Narrower Arithmetic

Classification Limitation

Discrepancy Jekejeke Prolog keeps some evaluable functions in a narrower scope. In
particular the arithmetic function (^)/2 is only defined for a non-negative ex-
ponent and a non-float result. A broader range doesn’t make sense since it
is already covered by (**)/2 and a higher precision can be hardly archived.

Integration /
Elimination

For non-integer arguments or for a negative exponent, one can regress to
the evaluable function (**)/2.

Failed Test
Cases

Corr.2 9.3.10.4, ISO 2
Corr.2 9.3.10.4, ISO 7
Corr.2 9.3.10.4, ISO 9

Corr.2 9.3.10.4, XLOG 1
Corr.2 9.3.10.4, XLOG 2

Related Find-
ings

-

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 17 of 30

Broader Arithmetic

Classification Enhancement

Discrepancy Recently we have further extended the (^)/2 operator not only to apply to an
integer basis but also to a decimal basis which will give a decimal result. A
float basis is automatically promoted to a decimal.

Jekejeke Prolog defines some evaluable functions with a broader scope. In
particular the arithmetic functions (mod)/2 and (rem)/2 are not only defined
for integers, but also on floats. Nowadays this is in already found in many
programming languages. For example Java has extended the mod operator
% towards floats.

Integration /
Elimination

The enhancement of evaluable functions in that previously exceptional val-
ues are now defined is allowed by ISO (5.5.10). Only in the strict conforming
mode (by the note referring to 5.1e) we would run into problems and would
need to remove the additional functionality. We could stash the functionality
to new evaluable functions (fmod)/2 and (frem)/2.

Failed Test
Cases

Corr.2 9.3.10.4, XLOG 3
Corr.2 9.3.10.4, XLOG 4:

ISO 9.1.7, ISO 35

Related Find-
ings

-

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 18 of 30

2.4 Package Structure
The below table shows a breakdown of the test results for the structure package:

Table 5: Structure Discrepancies
Module Cases Ok Nok Comment

type 55 55 0
lexical 22 22 0
term 90 85 5 Error Message

Array Access
string 67 66 1 Error Message
set 68 64 4 Error Message
Total 302 292 10

The new main findings for the structure package were:

 Array Access

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 19 of 30

Array Access

Classification Enhancement

Discrepancy The Jekejeke Prolog supports the built-ins functor/3 and arg/3. These predi-
cates can be used to dynamically created and access compound. This is a
simple substitute for arrays. The functor predicate already supports the view
that atoms are compounds of arity zero. Unfortunately according to the ISO
core standard, accessing atoms is not allowed.

Integration /
Elimination

If the ISO core standard requires this behaviour we can adapt our code
easily. Unfortunately in our current implementation we do not yet have a
compatibility switch. Here it would make sense to have such a switch.

The switch would also need to adapt the thrown exception. Consequently
since our current arg/3 implementation also accepts atoms, we have
changed the exception from type error compound to type error callable.

Failed Test
Cases

ISO 8.5.2.4, ISO 10

Related Find-
ings

-

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 20 of 30

2.5 Package Stream
The below table shows a breakdown of the test results for the stream package:

Table 6: Stream Discrepancies
Module Cases Ok Nok Comment

char 27 27 0
byte 15 12 3 Error Message
read 31 30 1
open 9 8 1 Stream Property
Total 82 77 5

The new main findings for the stream package were:

 Stream Property

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 21 of 30

Stream Property

Classification Enhancement

Discrepancy The ISO core standard defines a predicate stream_property/2 that can
enumerate all current streams. In Jekejeke Prolog it is only possible to in-
spect an existing stream or aliases, but not to enumerate streams.

Integration /
Elimination

Jekejeke Prolog provides streams to resources addressed by an URL. Such
streams could be created in high number by multi-threaded applications. For
efficiency and security reasons they should not be enumerable.

Stream references can be stored in clauses. Therefore if desired Prolog
applications can create their own dynamic predicates to manage their
streams and make their streams enumerable.

Failed Test
Cases

ISO 8.11.8, XLOG 1

Related Find-
ings

-

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 22 of 30

3 Omissions
We will list the unimplemented requirements. We did not yet follow the complete ISO core
standard syntax. And not all predicates and evaluable functions from the ISO core standard
have been implemented yet in the Jekejeke Prolog system. Therefore we find the following
omissions:

 Syntax Omissions
 Predicate Omissions
 Evaluable Function Omissions

3.1 Syntax Omissions
The following syntax is currently not followed in Jekejeke Prolog 1.1.2:

Table 7: Syntax Omissions
Syntax Source Examples

Empty set forbidden operator. ISO Draft Corrigendum 2. TC2 6.3.4.3
Empty list forbidden operator. ISO Draft Corrigendum 2. TC2 6.3.4.3

3.2 Predicate Omissions
The following predicates are currently not found in Jekejeke Prolog 0.9.7:

Table 8: Predicate Omissions
Predicate Source Examples

current_char_conversion/2 ISO Core Standard. ISO 8.14.6
char_conversion/2 ISO Core Standard. ISO 8.14.5
initialization/1 ISO Core Standard. - not found -
subsumes_term/2 ISO Draft Corrigendum 2. TC2 8.2.4.4
acyclic_term/1 ISO Draft Corrigendum 2. TC2 8.3.11.4
retractall/1 ISO Draft Corrigendum 2. TC2 8.9.5.4

3.3 Evaluable Function Omissions
The following evaluable functions are currently not found in Jekejeke Prolog 1.1.2:

Table 9: Evaluable Function Omissions
Evaluable Function Source Examples

float_integer_part/1 ISO Core Standard - not found -
float_fractional_part/1 ISO Core Standard - not found -

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 23 of 30

4 Test Setup
In this section we explain our test setup:

 Test Scope: In this section we explain what we will test. The aim of our testing is to
show compliance with the ISO standard. Since the ISO standard does not cover all
parts of Prolog systems, we will also not test all subsystems of our Prolog system.

 Test Method: We will present our test method. It is based on creating a number of
test cases for each predicate in each theory. A test runner will then execute the test
cases and summarize the results.

 Test Sources: We will give credit to the sources of our test cases. The Prolog ISO
standard movement consists of some documents that have already been adopted by
the ISO. Further there exists a working group that is involved in the definition of even-
tual supplements.

 Test Harness: The test harness is written in Prolog itself. It consists of a test runner
and a test result browser, as well as a report generator.

 Test Cases: The test cases are written in Prolog itself. They consist of positive and
negative test cases according to the sources.

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 24 of 30

4.1 Test Scope
In this section we explain what we will test. The aim of our testing is to show compliance with
the ISO standard. Since the ISO standard does not cover all parts of Prolog systems, we will
also not test all subsystems of our Prolog system. We will only test the following sub systems
of Jekejeke Prolog 1.1.1:

 The Jekejeke Prolog language (Runtime Library) [4].

The following sub systems are not tested:

 The Jekejeke Prolog console [5].
 The Jekejeke Prolog programming interface [6].
 The Jekejeke Prolog language (Development Environment).

The Jekejeke Prolog language consists of some basic concepts, of the syntax of Prolog texts
and queries and of Prolog text that define various artefacts. Among the defined artefacts we
find predicate, evaluable functions, exceptions, flags and properties. We will only test on the
level of predicates and evaluable functions.

For each tested predicate or evaluable function a number of test cases are defined. To reach
our goal of showing compliance with the ISO standard, we only pick those predicates and
evaluable functions which are also covered by the ISO standard. This means that we have
only to consider some of our Prolog texts. The picked predicates and evaluable functions
have been grouped into the following packages:

 Package Control
 Package Consult
 Package Arithmetic
 Package Structure
 Package Stream

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 25 of 30

4.2 Test Method
Our test method is a mix of test utilities that are bundled with the Jekejeke Prolog develop-
ment environment plus some test helper predicates already available in the Jekejeke Prolog
runtime library. The test utilities used are as follows. For further information on these mod-
ules the interested reads should consult the corresponding API documentation of the Jeke-
jeke Prolog development environment:

 Module testing/runner: This module allows executing test cases.

 Module testing/diagnose: This module allows online display of test results.

 Module testing/report: This module allows batch reporting of test results.

The chosen test method will increase the number of test cases compared to the number of
examples given in the test case sources. The reason is that the examples often phrase mul-
tiple validations points. And we suggest using a separate test_case/4 clause for each valida-
tion point. Let’s make an example. Take one of the ISO examples for clause/2. We find the
following description in the ISO source:

:- dynamic(insect/1).
:- assertz(insect(ant)).
:- assertz(insect(bee)).

clause(insect(I), T).
Succeeds, unifying I with ant, and T with true.
On re-execution,
succeeds, unifying I with bee, and T with true.

A succeed or fail on the first call translates very directly into a test case. We simply need to
place the tested predicate invocation as a step plus the required result comparison as a vali-
dation point into one test_case/4 clause. For success or failure after the first call we apply the
findall/3 built-in. This will allow us to advance the found solutions in the tested predicate in-
vocation. It can then be again followed by the required result comparison as a validation
point. In our current example this will give our second test_case/4 clause:

test_case(clause, 2, consult, 1) :- clause(insect(I), T), !,
I==ant, T==true.

test_case(clause, 2, consult, 2) :- findall(I-T,
clause(insect(I), T), [_,I-T|_]), I==bee, T==true.

The use of the findall/3 built-in in separate test cases means that the tested predicate is in-
voked again. So our approach is not the most efficient. On the other hand the approach has
the advantage that it can disclose individual failures of validation points separately.

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 26 of 30

4.3 Test Sources
We will give credit to the sources of our test cases. The Prolog ISO standard movement con-
sists of some documents that have already been adopted by the ISO. Further there exists a
working group that is involved in the definition of eventual supplements. The documents cur-
rently adopted by ISO contain more or less a systematic set of example uses of the predi-
cates and evaluable functions. These examples form the basis for our test cases.

The Jekejeke Prolog system does not yet implement all of the documents adopted by the
ISO. For example we do not yet implement the part 2 of the Prolog ISO standard that deals
with modules. On the other hand we have already implemented some documents that have
not been adopted by the ISO standard. Among these we find the definite clause grammars
draft and the draft technical corrigendum 2.

In summary the documents that have been respected in our test cases are:

 Prolog, Part 1: General Core, ISO/IEC 13211-1 [1]
 Prolog, Part 1: General Core, Technical Corrigendum 1, ISO/IEC 13211-1 [2]
 Prolog, Part 1: General Core, Draft Technical Corrigendum 2, ISO/IEC 13211-1 [8]
 Prolog, Part 1: General Core, Draft Proposal for setup_call_cleanup/3 [10]

The documents that have not yet been respected in our test cases are:

 Prolog, Part 2: Modules, ISO/IEC DTR 13211 2:2000 [7]
 Prolog, Part 3: Definite Clause Grammar Rules, Draft, ISO/IEC DTR 13211 3:2006 [3]

As [9] has already observed there could be test cases that could prevent a test suite from
properly functioning. These are test cases that either run infinitely or that produce an excep-
tion that is not wrapped by the Jekejeke Prolog system and thus considered to be fatal. In the
ISO core standard we find a set of test cases that matches this category. These are test cas-
es that involve cyclic terms. They are marked by the outcome undefined. We have excluded
all of these test cases.

Here is an example of an unused test case with cyclic terms:

/* X = Y, ISO 8.2.1.4 */

% test(=, 2, structure, _) :- f(X,Y,X,1) = f(a(X),a(Y),Y,2).

A further problem we observed was a certain redundancy in the test cases. The ISO stand-
ard often contains a test case with named variables and a test case with anonymous varia-
bles which are only variants of each other. We run the test suite with the singleton variables
check on, so that either of the variants is not accepted. We have only included one variant
since we did not see a benefit by going to some lengths to implement both variants as
checks.

Here is an example of an unused test case with singleton variables:

/* X \= Y, ISO 8.2.3.4 */

% Redundant: test(\=, 2, structure, _) :- \+ X \= Y.
test(\=, 2, structure, 3) :- \+ _ \= _.

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 27 of 30

Some arithmetic examples in the ISO core standard are marked as implementation depend-
ent. We have included them under the assumption that the 2-complement is used and the
division (/)/2 uses rounding towards zero. Further we did not include ISO examples that
made use of the Prolog flags max_integer or min_integer, since we did not see any use for
them in the context of our unbounded integer arithmetic.

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 28 of 30

4.4 Test Harness
The test harness is written in Prolog itself. It consists of a test runner and a test result brows-
er, as well as a report generator. This document does not contain the source code of the
harness programs. A version of the source code of the harness programs can be found on
the following web site:

www.jekejeke.ch/idatab/doclet/blog/en/docs/05_run/07_compliance/harness/package.jsp

Further the source code is also bundled in the suprun.zip when downloading the Jekejeke
Prolog runtime library from the web site.

www.jekejeke.ch/idatab/doclet/blog/en/docs/05_run/07_compliance/harness/package.jsp

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 29 of 30

4.5 Test Cases
The test cases are written in Prolog itself. They consist of positive and negative test cases
according to the sources. This document does not contain the source code of the test cases.
A version of the source code of the test cases can be found on the following web site:

www.jekejeke.ch/idatab/doclet/blog/en/docs/05_run/07_compliance/package.jsp

Further the source code is also bundled in the suprun.zip when downloading the Jekejeke
Prolog runtime library from the web site.

www.jekejeke.ch/idatab/doclet/blog/en/docs/05_run/07_compliance/package.jsp

Jan Burse Compliance Results XLOG Technologies GmbH

May 1, 2016 jekejeke_comp_res_2016_03_04_e.docx Page 30 of 30

Pictures

Picture 1: Number of Discrepancies ...6
Picture 2: Diagnosis Terminal Application.........................Fehler! Textmarke nicht definiert.

Tables

Table 1: Identified Findings...6
Table 2: Control Discrepancies...8
Table 3: Consult Discrepancies ..13
Table 4: Arithmetic Discrepancies ..15
Table 5: Structure Discrepancies..18
Table 6: Stream Discrepancies...20
Table 7: Syntax Omissions...22
Table 8: Predicate Omissions...22
Table 9: Evaluable Function Omissions..22

References

[1] ISO (1995): Prolog, Part 1: General Core, International Standard ISO/IEC 13211-1,
First Edition, 1995-06-01

[2] ISO (2007): Prolog, Part 1: General Core, Technical Corrigendum 1, International
Standard ISO/IEC 13211-1:1995, 2007-11-15

[3] Moura, P. ed. (2010): Prolog, Part 3: Definite Clause Grammar Rules, Draft, ISO/IEC
DTR 13211 3:2006, April 1, 2010

[4] Language Reference, Jekejeke Prolog 0.8.5, XLOG Technologies GmbH, Switzer-
land, October 2nd, 2010

[5] Console Manual, Jekejeke Prolog 0.8.5, XLOG Technologies GmbH, Switzerland,
October 2nd, 2010

[6] Programming Interface, Jekejeke Prolog 0.8.5, XLOG Technologies GmbH, Switzer-
land, October 2nd, 2010

[7] ISO (2000): Prolog, Part 2: Modules, International Standard ISO/IEC 13211-2, First
Edition, 2000-06-01

[8] ISO (2012): Prolog, Part 1: General Core, International Standard ISO/IEC 13211-1,
Technical Corrigendum 2, 2012-02-15

[9] Szabo, P. and Szeredi, P.: Improving the ISO Prolog Standard by Analyzing Compli-
ance Test Results, Twenty Second International Conference on Logic Programming,
Seattle, August 17 - 20, 2006

[10] Neumerkel, U. ed. (2009): post-N215, Draft Proposal for setup_call_cleanup/3,
http://www.complang.tuwien.ac.at/ulrich/iso-prolog/cleanup

http://www.complang.tuwien.ac.at/ulrich/iso

