

Jekejeke Runtime Frequent

Version 1.3.7, April 25th, 2019

XLOG Technologies GmbH

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 2 of 115

Jekejeke Prolog

 Runtime Library 1.3.7

Frequent Predicates

Author: XLOG Technologies GmbH

Jan Burse
Freischützgasse 14
8004 Zürich
Switzerland

Date: April 25th, 2019
Version: 0.31

Warranty & Liability
To the extent permitted by applicable law and unless explicitly otherwise agreed upon, XLOG
Technologies GmbH makes no warranties regarding the provided information. XLOG Tech-
nologies GmbH assumes no liability that any problems might be solved with the information
provided by XLOG Technologies GmbH.

Rights & License

All industrial property rights regarding the information - copyright and patent rights in particu-
lar - are the sole property of XLOG Technologies GmbH. If the company was not the origina-
tor of some excerpts, XLOG Technologies GmbH has at least obtained the right to repro-
duce, change and translate the information.

Reproduction is restricted to the whole unaltered document. Reproduction of the information
is only allowed for non-commercial uses. Small excerpts can be used if properly cited. Cita-
tions must at least include the document title, the product family, the product version, the
company, the date and the page. Example:

 … Defined predicates with arity>0, both static and dynamic, are indexed on

the functor of their first argument [1, p.17] ...

[1] Language Reference, Jekejeke Prolog 0.8.1, XLOG Technologies GmbH,
Switzerland, February 22nd, 2010

Trademarks

Jekejeke is a registered trademark of XLOG Technologies GmbH.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 3 of 115

Table of Contents

1 Introduction ..6

2 Frequent Examples ..7
2.1 Flag Example ... 8
2.2 Palindrome Example [ISO] ..10
2.3 Fruits Example ..12
2.4 Hello Example ...14

3 Frequent Conversations ... 18
3.1 Ensure Loaded ..18
3.2 Make ...18
3.3 Unload File ..18
3.4 Compatibility Matrix ...18

4 Frequent Syntax .. 19
4.1 Term Syntax ..20
4.2 Text Syntax ...21
4.3 Miscellaneous Definitions ..23

5 Frequent Theories .. 25
5.1 Standard Package [partially preloaded] ...26
5.2 Basic Package [partially preloaded] ...37
5.3 Advanced Package ..49
5.4 Experiment Package [partially preloaded] ..56
5.5 Stream Package [partially preloaded] ..63
5.6 System Package..76
5.7 Miscellaneous Package ...89

6 Appendix Example Listings .. 100
6.1 Flag Example .. 100
6.2 Palindrome Example [ISO] .. 102
6.3 Fruits Example .. 103

Acknowledgements .. 106

Indexes .. 106
Public Predicates .. 106

Pictures .. 114

Tables .. 114

Acronyms ... 115

References ... 115

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 4 of 115

Change history
Jan Burse, June 22th, 2014, 0.1:

 Initial Version.
Jan Burse, August 17th, 2014, 0.2:

 The modules expand and simp introduced.
Jan Burse, October 10th, 2014, 0.3:

 Package stream and standard moved to here, modules random and shell introduced.
Jan Burse, January 1st, 2015, 0.4:

 The module lists improved and the text simp demodulified.
Jan Burse, Mai 6th, 2015, 0.5:

 Improved URI handling and new locale module.
Jan Burse, July 9th, 2015, 0.6:

 Some additions to stream/console and system/locale.
Jan Burse, August 5th, 2015, 0.7:

 DCG extensibility improved.
Jan Burse, September 2th, 2015, 0.8:

 New module surrogate and sequence.
Jan Burse, October 20th, 2015, 0.9:

 Improved resource handling and new proxy module.
Jan Burse, January 2nd, 2016, 0.10:

 Functional improvements to the proxy module.
Jan Burse, February 17th, 2016, 0.11:

 Non-functional improvements to the proxy module.
Jan Burse, March 8th, 2016, 0.12:

 Broader scope of clause references.
Jan Burse, April 12th, 2016, 0.13:

 New miscellaneous definitions section and new indexes section.
Jan Burse, May 15th, 2016, 0.14:

 New module text introduced.
Jan Burse, June 27th, 2016, 0.15:

 New modules maps and ordmaps introduced.
Jan Burse, August 6th, 2016, 0.16:

 New module “clean” introduced.
Jan Burse, October 28th, 2016, 0.17:

 String pattern matching framework introduced.
Jan Burse, December 15th, 2016, 0.18:

 Aggregates moved to Jekejeke Minlog.
Jan Burse, April 23th, 2017, 0.19:

 Some improvements in the residue module.
Jan Burse, July 18th, 2017, 0.20:

 Some improvements in the XML module.
Jan Burse, December 13th, 2017, 0.21:

 Complex types in the DOM parser and un-parser.
Jan Burse, May 21th, 2018, 0.23:

 Improve Java proxy classes API and new module score.
Jan Burse, October 22th, 2018, 0.25:

 Some improvements.
Jan Burse, November 19th, 2018, 0.26:

 New modules "socket" and "group" introduced.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 5 of 115

Jan Burse, December 26th, 2018, 0.27:

 Some improvements.
Jan Burse, December 29th, 2018, 0.28:

 New modules "json" and "http".
Jan Burse, February 01th, 2019, 0.29:

 The tty predicates from module "console" removed.
Jan Burse, March 01th, 2019, 0.30:

 Modules "dict", "func" and "json" removed. New module "aggregate".
Jan Burse, April 25th, 2019, 0.31:

 Better support for archive files.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 6 of 115

1 Introduction
The document describes the collection of modules that is bundled with the Jekejeke Prolog
runtime library and that provide frequently used predicates.

 Frequent Examples: Some examples that make use of Runtime frequent predicates.

 Frequent Conversations: Typical interpreter interactions for loading modules.

 Frequent Syntax: t.b.d.

 Frequent Theories: The theories that group the Runtime frequent predicates.

 Appendix Example Listing: The full source code of Prolog examples is given.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 7 of 115

2 Frequent Examples
In the following we show some examples that make use of Runtime frequent predicates.

 Flag Example: The Jekejeke Prolog programming language provides higher order
programming. The given example shows how to define a loop construct.

 Palindrome Example [ISO]: Grammar rules are also included in the Jekejeke Prolog
programming language. The given example allows detecting and generating palin-
dromes.

 Fruits Example: The higher order programming of Jekejeke Prolog is also available
for grammar rules. The given example shows how to define a list construct.

 Hello Example: In this example, we demonstrate how the module "http" can be used
to code a dynamic page of a web server.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 8 of 115

2.1 Flag Example
The Jekejeke Prolog programming language provides higher order programming. The given
example shows how to define a loop construct. The goal of this example is to return a star
banner. In a first step we will only display the star banner on the console which is simpler
than returning a star banner. On purpose we will first build a loop construct so that we can
use FORTRAN like loops to solve our problem. The displayed star banner should have size
8x8 and look as follows:

xoxoxoxo

oxoxoxox

...

xoxoxoxo

oxoxoxox

To enumerate the x- and y-axis we can define a predicate between/3 which will enumerate
integers in a given range. The detailed Prolog text of this predicate can be found in the ap-
pendix together with the rest of this example. We then use the between/3 predicate to define
a loop construct as follows:

% for1(+Integer, +Integ er, +Closure)

for1(Lo, Hi, Closure) : -

 between(Lo, Hi, Value),

 call(Closure, Value),

 fail.

for1(_,_,_).

The above loop construct uses the higher order programming predicate call/n to invoke the
given closure. Since 2012 this predicate is part of the ISO Prolog standard via the corrigen-
dum 2. The closure is supposed to be the loop body and the identification of the loop varia-
ble. The loop construct will then repeatedly invoke the loop body with integer values ranging
from the given lower bound to the given upper bound, both inclusively. A solution to the flag
display problem is quickly coded by using the system predicates write/1 and nl/0.

% flag

flag : -

 for1(1,8,X \

 for1(1,8,Y \

 (0 =:= (X+Y) mod 2 - > write(x); write(o))), nl)).

The above solution makes use of another higher order programming predicate besides call/n.
We also find the abstraction operator (\)/2 to create a closure. This use of the abstraction
operator (\)/2 is Jekejeke Prolog specific and not part of some ISO Prolog standard. One
characteristic of the above solution is the peculiar use of backtracking. The image of the flag
is generated via backtracking and will thus not persist.

Let’s now turn to the question how we could return a star banner instead of only displaying
it? We want a solution where ‘x’ and ‘o’ are assigned to some variable and then returned. But
to make this happen we are not allowed to backtrack over the assignment step, since we
would then loose the binding. We must therefore chain the closure invocations instead of
backtracking over them. Here is our take for an alternative for loop:

% for2(+Integer, +Integer, +Closure)

for2(Lo, Hi, _) : - Lo > Hi, !.

for2(Lo, Hi, Closure) : -

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 9 of 115

 call(Closure, Lo),

 Lo2 is Lo+1,

 for2(Lo2, Hi, Closure).

The above predicate does not anymore make use of a predicate between/3. Instead it does
do the bounds check by itself. There is now no more failure when we are outside of the
bounds, instead there is some success and a no-op concerning the closure. When we are
inside the bounds the closure is invoked and in the same time a recursion into the new loop
predicate happens again. Any bindings that are done by the invocation of the closure will not
be lost during the next iteration.

We can now go on and for example populate an array in each invocation of the closure via
instantiation and will not lose this instantiation. For arrays we do not provide some special
constructs but rely on the ISO Prolog standard defined predicates. We simply view arrays as
compounds with irrelevant functors. An array with not instantiated elements can be created
via the system predicate functor/3:

?- functor(X,'',8).

X = ''(_A,_B,_C,_D,_E,_F,_G,_H)

An element of an array can be accessed via the system predicate arg/3. Please note that the
first argument of a compound and thus an array has the index value 1:

?- functor(X,'',8), arg(3,X,x), arg(4,X,o).

X = ''(_A,_B,x,o,_E,_F,_G,_H)

The full code of the flag solution that will return a flag as a 2-dimensional array can be found
in the appendix. Running the code yields the following result:

?- flag(X).

X = ''(''(x,o,x,o,x,o,x,o),

''(o,x,o,x,o,x,o,x),

''(x,o,x,o,x,o,x,o),

''(o,x,o,x,o,x,o,x),

''(x,o,x,o,x,o,x,o),

''(o,x,o,x,o,x,o,x),

''(x,o,x,o,x,o,x,o),

''(o,x,o,x,o,x,o,x))

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 10 of 115

2.2 Palindrome Example [ISO]
Grammar rules are also included in the Jekejeke Prolog programming language. The given
example allows detecting and generating palindromes. A palindrome is a string that reads
the same in the reverse. We can again invoke a graphical intuition based on a sieve to ex-
plain our algorithm. In a first step we list the characters of the word, here “racecar”:

r a c e c a r

The algorithm works outside in by crossing out uncrossed characters. A left outer character
and a right outer character can be crossed out when they are the same. If all characters have
been crossed out or only one character is left, we have detected a palindrome.

r a c e c a r

r a c e c a r

r a c e c a r

Prolog grammar rules by default work on lists of terminals. Our terminals here are the char-
acters. We define one non-terminal palin that should be able to detect palindromes. The cor-
responding grammar rules are:

palin -- > [_].

palin -- > [Middle, Middle].

palin -- > [Border], palin, [Border].

The first rule is one of our stopping conditions. We stop when no more characters are left.
The second rule expresses that we stop when a single character is left, whereby we don’t
care which character it is. The last rule expresses our crossing out step and the continuation
of the palindrome check. Grammar rules can be invoked via the phrase/2 predicate:

?- phrase(palin, " racecar ").

Yes

?- phrase(palin, "anna").

Yes

?- phrase(palin, "bert").

No

Grammar rules might also return attributes. We simply have to extend the non-terminal palin
by further arguments. Our plan is to return the middle element, if it exists and the border el-
ements whereby we do not duplicate them. The corresponding grammar rules are:

palin([], [Middle]) -- > [Middle].

palin([Middle], []) -- > [Middle , Middle].

palin([Border | List], Middle) -- > [Border], palin(List, Middle), [Border].

In the first rule we encode the nonexistence of a middle element by an empty list. In the sec-
ond rule we encode the middle element by a singleton list. The last rule collects the border
elements. The grammar rules are again invoked via the phrase/2 predicate:

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 11 of 115

?- phrase(palin(X1, Y1), "racecar"), atom_codes(X2,X1), atom_codes(Y2,Y1).

X1 = [114, 97, 99],

Y1 = [101],

X2 = rac,

Y2 = e

?- phrase(palin(X1, Y1), "anna"), atom_codes(X2,X1), atom_codes(Y2,Y1).

X1 = [97, 110],

Y1 = [],

X2 = an,

Y2 = ''

?- phrase(palin(X1, Y1), "bert"), atom_codes(X2,X1), atom_codes(Y2,Y1).

No

But grammar rules can not only be used to detect strings or to extract information from
strings. It is also possible to use grammar rules to generate strings. In many cases we it is
enough to simply use the grammar attributes as input and the strings as output.

?- phrase(palin("ra", "d"), X1), atom_codes(X2,X1).

X1 = [114, 97, 100, 97, 114],

X2 = radar

The presented examples should work across a great range of Prolog systems. Although
there is not yet a definite DCG standard most of the Prolog systems support DCGs.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 12 of 115

2.3 Fruits Example
The higher order programming of Jekejeke Prolog is also available for grammar rules. The
given example shows how to define a list construct. In the following we will explore how to
define a custom grammar construct for repetition, which in turn will be used to define a list.
Repetition is not found in definite clause grammar. Other grammar formalisms typically de-
fine a construct for repetition since it is a recurring pattern.

For instance the Extended Backus-Naur Form (EBNF) allows curly braces to denote repeti-
tions. Our working example will be the grammar for a fruit list:

fruits :== fruit { " , " fruit }. /* EBNF */

In definite clause grammars curly braces do not denote repetition. They are reserved for aux-
iliary conditions. We will pick the non-terminal repetition//1 and give it the phrase that will be
repeated as an argument. The corresponding code looks as follows:

repetition(G) -- > G, repetition(G).

repetition(_) -- > [].

We can now remodel the EBNF grammar in DCG. We omit the fruit non-terminal. The details
of it can be found in the appendix. The fruits non-terminal then reads as follows:

fruits -- > fruit, repetition((",", fruit)).

Here are some example queries:

?- phrase(fruits,"appleorange").

No

?- phrase(fruits,"apple,orange,apple").

Yes

In a next step we will extend the DCG by attributes. The repetition construct should take as
an argument a phrase G(X) with a parameter X and it should yield the list [X1, .., Xn] of pa-
rameter instances that occur during the repetition. Instead of G(X) we can only write call(G,X)
in Prolog. Therefore we will formulate repetition//2 as follows:

repetition(G,[X|Y]) -- > call(G,X), repetition(G,Y).

repetition(_,[]) -- > [].

The fruits production starts with one fruit and the repeats zero, one or many fruits. We can
access the first one fruit by fruit(X). The fruits in the repetition of (“,”, fruit(Z)) are identified by
the parameter Z. We will use the binder Z\ to pass the parameter to the repetition construct.
The new fruits non-terminal then reads as follows:

fruits([X|Y]) -- > fruit(X), repetition(Z \ (",", fruit(Z)),Y).

By using higher order we don’t lose the bi-directionality of DCG productions. We can use the
new non-terminal to parse fruit texts:

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 13 of 115

?- phrase(fruits(L),"appleorange").

No

?- phrase(fruits(L),"apple,orange,apple").

L = [apple, orange, apple]

And we can use the new non-terminal to generate fruit texts:

?- phrase(fruits([apple, orange]),X), atom_codes(A,X).

A = 'apple,orange',

X = [97, 112, 112, 108, 101, 44, 111, 114, 97, 110, 103, 101]

The example without attributes should work across a great range of Prolog systems. Alt-
hough there is not yet a definite DCG standard most of the Prolog systems support DCGs
with goal parameters.

On the other hand the example with attributes might not immediately work in a Prolog system
different from Jekejeke Prolog. Even if the Prolog system has higher order programming in
the form of call/n and some variable binder, the higher order constructs might still fail inside a
DCG grammar.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 14 of 115

2.4 Hello Example
In this example, we demonstrate how the module "http" can be used to code a dynamic page
of a web server. The prerequisites are basic HTTP and HTML knowledge and some practical
experience in object-oriented programming. A tutorial on object-oriented programming in
Jekejeke Prolog is found in the reference manual.

To realize a web server and run it via the module "http" a class has to be defined in the form
of Prolog module text. This class can implement the Pythonesk methods initialized/1, de-
stroyed/1, dispatch/3 and upgrade/3. If none of these methods are implemented the web
server will neither send life-cycle notifications and requests will end in a 404 error.

We begin with; we will code the serving of a static image. The module "http" provides a cou-
ple of predicates to ease serving static content. The routing is still in the curtesy of the web
server code that can decide which URL paths lead to what content. The following code will
deliver an image to the browser client:

: - module(hello, []).

: - reexport(library(misc/http)).

: - override dispatch/4.

: - public dispatch/4.

dispatch(_, '/example04/piglet.gif', Request, Session) : - !,

 dispatch_binary(library(exa mple04/piglet), Request, Session).

dispatch(Object, Spec, Request, Session) : -

 misc/http:dispatch(Object, Spec, Request, Session).

Before running the code make sure that the module has also a package directive so that
short module names can be used. Further do not forget the add the module package root
and the image package root to the class path. The web server can then be run as follows
directly from the top-level:

?- use_module(library(misc/http)).

% 11 consults and 0 unloads in 188 ms.

Yes

?- run_h ttp(example04/hello, 8085), write('.'), flush_output, fail; true.

The browser can now point to the web server and will receive the image for display. When on
the same host as the host name suffices to "localhost". Otherwise, the IP number or host
name of the web server can be looked up and remotely pointed to. The port number is the
port number that was chosen for the run_http/2 command. As an example, we use:

http:// loca lhost:8085/example04/piglet.gif

The above URL combines besides the host name "localhost" and the port number 8085 also
the protocol name "http" and the path "example04/piglet.gif". The path is the same that our
dispatch/4 method in the module "hello" recognized. The URL is simple in that it does not
have any further components. The browser result is the image display at the client side:

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 15 of 115

Figure: Browser result of URL for static image.

We are now going to add further functionality. We want to have a dynamic HTML page that
shows a parameter "name" from the request URL. We will call the dynamic HTML page "hel-
lo.jsp" and as a first step a further dispatch for this HTML page has to be added to the mod-
ule "hello". We add a new clause after the image delivery and before the fallback.

: - override dispatc h/4.

: - public dispatch/4.

dispatch(_, '/example04/piglet.gif', Request, Session) : - !,

 dispatch_binary(library(example04/piglet), Request, Session).

dispatch(_, '/example04/hello.jsp', Request, Session) : - !,

 dispatch_hello(Request, Session).

dispat ch(Object, Spec, Request, Session) : -

 misc/http:dispatch(Object, Spec, Request, Session).

The predicate dispatch_hello/2 has now the duty to first check whether the parameter "name"
is there. The dispatch/4 predicate from the module "http" does deliver URL parameters in the
third argument with the request. URL parameters can be accessed with the predicate
http_parameter/3 from the module "http". This is done as follows:

: - private dispatch_hello/2.

dispatch_hello(Request, Session) : -

 http_parameter(Request, name, Name), !,

 catch(handle_hello(Name, Session), _, true).

dispatch_hello(_, Session) : -

 dispatch _error(415, Session).

In the above code, we respond with an error 415 when the parameter is missing. The method
dispatch_error/2 to deliver the response is from the module "http". If the parameter is there
we use it to build some dynamic content. However, before we can deliver our dynamic con-
tent we need to get ourselves a response writer:

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 16 of 115

: - private handle_hello/2.

handle_ hello(Name, Session) : -

 setup_call_cleanup(

 open(Session, write, Response),

 send_hello(Name, Response),

 close(Response)).

In the above, we do not find an ISO core standard catch/3 control construct as already used
in the previous predicate to absorb an errors. Instead, we use the ISO working group sug-
gested setup_call_cleanup/3 construct available in many Prolog systems. This way we can
make sure that close/1 is called irrespective whether there was an error or not.

Incorporating data bears the danger of cross side scripting. If not enough attention is paid
data will reach the client verbatim and might contain malicious script executions. To avoid
such mishaps the module "http" provides a predicate html_escape/2 that will use XML enti-
ties in place of critical characters. We thus produce our dynamic content as follows:

: - private send_hello/2.

send_hello(Name, Response) : -

 response_text(200, ['Content - Type' -

 'text/html; charset=UTF - 8'], Response),

 atom_split(Title, ' ', ['Hello',Name]),

 html_begin(Response, Title),

 write(Response, ' <center> \ r \ n'),

 write(Response, '<h1>Happy New Year 20 19, '),

 html_escape(Response, Name),

 write(Response, '</h1></center> \ r \ n'),

 html_end(Response).

In the above, the predicate response_text/3 will generate the HTTP response headers for us.
For a realization of the predicates html_begin/2 and html_end/1 the reader is referred to the
source text of the example. Re-consulting the enhanced module is a matter of stopping the
web server via a top-level interrupt by the key combination Ctrl-Period.

. ?- make.

% 1 consults and 0 unloads in 16 ms.

Yes

?- ru n_http(example04/hello, 8085), write('.'), flush_output, fail; true.

Stopping the web server via interrupt does no harm. Our realization of the catch/3 control
construct is such that it cannot block interrupts so that no zombie threads should remain.
Further, our realization of the setup_call_cleanup/3 control construct is such that it cleans up
also for interrupt related exceptions.

As can be seen in the above, the web server is readily restarted by issuing a run_http/2 que-
ry. The URL that can now reach the dynamic page will need a "name" parameter. To have
URL parameters in an URL we need to add a query part via the question mark character (?).
Further the key and value needs to be separated by the equals character (=):

http:// loca lhost:8085/example04/hello.jsp?name=Fritz

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 17 of 115

In case an URL needs multiple key value pairs these can be separated by the ampersand
character (&). An URL might further contain a hash (#) to jump to some location. This is usu-
ally not part of a request. Rather information that a web server might generate for links. The
browser result is the dynamic page rendered on the client side:

Figure: Browser result of URL for dynamic page.

The module "http" is a relatively new module. In this example, we tried to show some Prolog
programming idioms that work for the coding of Prolog web servers based on simple GET
methods. Some of the APIs of the module "http" might still change in the future, especially in
respect of the debugging of service objects and new methods.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 18 of 115

3 Frequent Conversations
The section shows typical interpreter interactions for loading modules. Jekejeke Prolog fea-
tures an intelligent loader based on a dependency model. Further there is a module system
in place which provides name spaces and protection.

 Ensure Loaded: Ensure loaded is recommended to load modules and Prolog texts
from within a Prolog text or from within the top level.

 Make: The intelligent loader is capable to automatically update changed modules and
Prolog texts. This allows the integration with development environments.

 Unload File: Loaded modules and Prolog texts can be disconnected and a kind of
garbage collection will reclaim all unused modules and Prolog texts.

 Compatibility Matrix: We compare our approach to some existing Prolog systems
that provide intelligent loaders and module systems.

3.1 Ensure Loaded
Ensure loaded is recommended to load modules and Prolog texts from within a Prolog text or
from within the top level. This predicate will load a module or Prolog text only if necessary.

3.2 Make
The intelligent loader is capable to automatically update changed modules and Prolog texts.
This allows the integration with development environments.

3.3 Unload File
Loaded modules and Prolog texts can be disconnected and a kind of garbage collection will
reclaim all unused modules and Prolog texts.

3.4 Compatibility Matrix
We compare our approach to some existing Prolog systems that provide intelligent loaders
and module systems:

Table 1: Compatibility Matrix for Interactions

Nr Description System

1 t.b.d.

2 t.b.d.

3 t.b.d.

4 t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 19 of 115

4 Frequent Syntax
We mention here syntax that is introduced by the modules. Some modules directly introduce
new syntax operators. Some modules indirectly introduce new rule or goal formats by corre-
sponding expansion rules.

 Term Syntax: Syntax operators introduced by the frequent predicates.

 Text Syntax: Rule or goal formats introduced by the frequent predicates.

 Miscellaneous Definitions: The interpreter keeps track of flags and properties.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 20 of 115

4.1 Term Syntax
This syntax describes the grammar that forms terms from token sequences. We find the fol-
lowing topics:

 Compatibility Matrix: t.b.d.

Compatibility Matrix

t.b.d.

Table 2: Compatibility Matrix for the Token Syntax

Nr Description System

1 t.b.d.

2 t.b.d.

3 t.b.d.

4 t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 21 of 115

4.2 Text Syntax
This syntax describes the grammar that forms Prolog texts and queries from term sequenc-
es. We find the following topics:

 Grammar Rules: Grammar rules support parsing and un-parsing of phrases.

 Compatibility Matrix: t.b.d.

Grammar Rules

Rules based on the (-->)/2 functor are historically called definite clause grammars (DCG).
The term definite refers to the absence of negation. But this is not the case anymore nowa-
days, since grammar rules might also include a grammatical negation. The head predicate of
a grammar rule represents a non-terminal. The predicates in the body of a grammar rule
normally refer to other non-terminals. The list and the set construct are used to escape this
interpretation. The form of grammar rules can be summarized as follows:

 clause’ -- > gr_clause

 | head ": - " body

 | head .

 gr_rule -- > gr_head " -- >" gr_body .

 gr_body -- > gr_goal [" , " gr_body].

 gr_goal -- > set

 | list

 | non - terminal | variable

 | gr_body " - >" gr_body

 | gr_body " ; " gr_body

 | "call(" non - terminal "," arguments ")"

 | " ! " | " fail " | " \ \ +" gr_goal.

 gr_head -- > non_terminal " , " gr_body

 | non_terminal.

 non - terminal -- > callable.

Examples:

 zero -- > "0" . % is a grammar rule .

 s(s(X,Y)) -- > np(X), vp(Y). % is a grammar rule .

The list construct allows referring to terminals, and the set construct allows referring to nor-
mal rule bodies. The terminals in a list construct need not only be character codes. They can
be arbitrary terms, so as to allow higher level parsing and un-parsing. Again the head of a
grammar rule has to be a callable. It is not possible to have grammar rules for numbers or
variables. Double quoted strings are short hands for lists of character codes, and they will
therefore be interpreted as character code terminals in the body of a grammar rule.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 22 of 115

Compatibility Matrix

t.b.d.

Table 3: Compatibility Matrix for the Token Syntax

Nr Description System

1 t.b.d.

2 t.b.d.

3 t.b.d.

4 t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 23 of 115

4.3 Miscellaneous Definitions
The interpreter also needs to keep track of flags and properties definitions. The following
flags and properties are provided by the Runtime frequent predicates:

 Prolog Flags: The predefined Prolog flags.

 Predicate Properties: The predefined predicate properties.

 Source Properties: The predefined source properties.

 Atom Properties: The predefined atom properties.

Prolog Flags

Prolog flags can be accessed via the system predicates current_prolog_flag/2 and
set_prolog_flag/2. The following Prolog flags are supported by the Runtime frequent predi-
cates:

char_conversion: See the term input / output section.
double_quotes: See the term input / output section.
back_quotes: See the term input / output section.
single_quotes: See the term input / output section.
sys_cur_input: See the stream control section.
sys_cur_output: See the stream control section.
sys_cur_error: See the stream control section.
sys_tool_input: See the stream control section.
sys_tool_output: See the stream control section.
sys_tool_error: See the stream control section.
sys_mask: See the signal handling section.
sys_choices: See the signal handling section.
sys_variables: See the signal handling section.
sys_cpu_count: See the module thread section.
sys_runtime_version: See the module thread section.
sys_random: See the module random section.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 24 of 115

Predicate Properties

Predicate properties can be accessed via the system predicates predicate_property/2,
set_predicate_property/2 and reset_predicate_property/2. The following predicate properties
are supported by the Runtime frequent predicates:

 automatic: See the module score section.
 sys_noexpand: See the module expand section.
 sys_nomacro: See the module expand section.

Source Properties

Source properties can be accessed via the system predicates source_property/2,
set_source_property/2 and reset_source_property/2. The following source properties are
supported by the Runtime frequent predicates:

t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 25 of 115

5 Frequent Theories
We have split the frequent predicates into two packages. One package with basic predicates
and one package with advanced predicates.

 Standard Package: This package contains predicates that are either mentioned in
the ISO core standard or in some of its corrigenda.

 Basic Package: This package contains basic predicates that are partly already used
by the Prolog interpreter itself.

 Advanced Package: This package contains advanced predicates that can be used in
various Prolog applications.

 Experiment Package: This package contains experimental predicates that deliver
some alternative or extended realizations of commonly found predicates.

 Stream Package: This theory is concerned with input/output and the selection of
streams.

 System Package: This package contains predicates that allow the access to various
operating system elements.

 Miscellaneous Package: This package contains miscellaneous predicates.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 26 of 115

5.1 Standard Package [partially preloaded]
This package contains predicates that are either mentioned in the ISO core standard or in
some of its corrigenda, or that are to be expected to be soon published by the ISO Prolog
committee. The modules of the package are nameless and preloaded. They don’t needed to
be loaded and cannot be loaded by the end-user. The following modules are provided:

 Module apply [preloaded]: This module provides of apply predicates.

 Module bags [preloaded]: This module provides grouped solution lists.

 Module expand [preloaded]: This module provides term and goal expansion.

 Module dcg: This module provides definite clause grammars.

 Module signal [preloaded]: A secondary thread can control a primary thread.

 Module sort [preloaded]: This module provides predicates that can sort lists.

 Compatibility Matrix: t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 27 of 115

Module apply [preloaded]

We provide function application via the predicates call/n. This predicate takes as a first ar-
gument a term which plays the role of a closure, then extends it by the remaining n-1 argu-
ments and calls the resulting goal. Since the closure need not necessarily be an atom but
can also be a compound, it is possible to create closures that carry around data.

Example:

?- [user].

writeln(X) : - write(X), nl.

^D

?- call(write ln, hello).

hello

The call/n predicates also work for qualified closures. A qualified closure is similarly extended
to an unqualified closure. The arguments will be added to the inner unqualified closure and
the qualification will be preserved. So extending a:b(X) by Y results in a:b(X,Y). The predi-
cates sys_modext_args/[3..9] allow to call the argument extension without further invoking
the result.

Example:

?- X is call(sin,0.2).

X = 0.19866933079506122

?- Y = sin, X is call(Y,0.2).

Y = sin,

X = 0.19866 933079506122

Thanks to bridging it is also possible to use the call/n predicates inside arithmetic expres-
sions. The bridge will turn the call/n evaluable function into a call/n+1 predicate with the de-
sired effect.

The following apply predicates are provided:

sys_modext_args(P, Y1, .., Yn, Q):
 The predicate adds the arguments Y1, .., Yn to the callable P and unifies the result

with Q. The result Q will have the same call-site information and the same colon and
double notation as the callable P. The predicate is currently defined for 1 ≤ n ≤ 7.

call(P, Y1, .., Yn): [TC2 8.15.4]
 The goal call(p(X1, .., Xm), Y1, .., Yn) succeeds whenever the goal p(X1, .., Xm, Y1, ..,

Yn) succeeds. The predicate is currently defined for 1 ≤ n ≤ 7.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 28 of 115

Module bags [preloaded]

The following predicates do a grouping of the solutions and may succeed more than once.
This grouping is based on the determination of the witnesses of a solution. The witness are
the global variables of T^G where T is the template and G is the goal.

Examples:

p(a,y). p(a,x). p(b,x).

?- bagof(X,p(X,Y),L).

Y = y, L = [a] ;

Y = x, L = [a, b]

?- bagof(X,Y^p(X,Y),L).

L = [a, a, b]

The predicate bagof/3 will do a sorting of the witnesses but not of the resulting lists. The var-
iation setof/3 will sort the witnesses and the resulting lists. Finally the variation sys_heapof/3
will neither sort the witnesses nor the resulting lists.

Examples:

p(a). p(b).

q(a). q(b). q(c).

?- forall(p(X), q(X)).

Yes

?- forall(q(X), p(X)).

No

The predicate copy_term/2 can be used to copy a term. The predicate findall/3 can be used
to collect a resulting list without any grouping. The elements will be copied. The forall/2 per-
forms generate and test and can be used for a bounded universal quantification.

The following bags predicates are provided:

bagof(T, X1^…^Xn^G, L): [ISO 8.10.2]

The predicate determines all the solutions to the matrix G, whereby collecting copies
of the template T grouped by the witnesses in a list. The predicate then repeatedly
succeeds by unifying the witnesses and when L unifies with the corresponding list.

setof(T, X1^…^Xn^G, L): [ISO 8.10.2]
The predicate determines the same lists as the predicate bagof/3. But before return-
ing them the lists are sorted by means of the predicate sort/2.

sys_heapof(T, X1^…^Xn^G, L):
The predicate determines the same lists as the predicate bagof/3. But the lists are
sorted by the witnesses instead of grouped by the witnesses.

copy_term(X, Y): [ISO 8.5.4]
The predicate creates a copy of X and succeeds when the copy unifies with Y.

findall(T, G, L): [ISO 8.10.1]
findall(T, G, L, R):

The predicate first finds all the solutions to the goal G, whereby collecting copies of
the template T in a list. The predicate then succeeds when L unifies with the list.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 29 of 115

forall(A,B): [N208 8.10.4]
The predicate succeeds when there is no success of A such that B fails. Otherwise
the predicate fails.

foreach(F, G):
Calls the conjunction of those goal instances of G where F succeeds. Variables oc-
curring in G and not occurring in F are shared.

foreach(F, G, I, O):
Calls the conjunction of those closure instances of G where F succeeds threading
them with input I and output O. Variables occurring in G and not occurring in F are
shared.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 30 of 115

Module expand [preloaded]

Clauses and goals are automatically expanded for the Prolog session queries, for the Prolog
text clauses and for the Prolog text directives. The effect can be seen by the following exam-
ple. The first goal_expansion/2 fact defines a new expansion for the predicate writeln/2. The
next rule for the predicate hello/0 already makes use of the expansion in the body:

Example:

?- [user].

goal_expansion(writeln(X), (write(X), nl)).

hello : - writeln('Hello World!').

^D

?- listing(hello/0).

hello : -

 write('Hello World!'), nl.

The clauses are expanded with the help of the system predicate expand_term/2, which in
turn expands the goals of the bodies via the system predicate expand_goal/2. The two sys-
tem predicates are customizable by the end-user via additional rules for the multi-file predi-
cates term_expansion/2 and goal_expansion/2.

The predicate property sys_noexpand/0 allows excluding a meta-predicate from the goal or
term traversal. Closures are currently not expanded. If the term or goal expansion steps into
the colon notation (:)/2 or the double colon notation (::)/2 with a sufficiently instantiated first
argument it will look up the meta-declarations for the qualified predicate name.

The result of the expansion can be no clause, a single clause or multiple clauses. No clause
is indicated by unit/0 as a result. A single clause is simply returned by itself. Multiple clauses
can be conjoined by the operator (/\)/2 and returned this way. Expansion is also performed
along the existential quantifier (^)/2 second argument.

Example:

?- op(500,yfx,++).

Yes

?- [user].

rest_expansion(X++Y,sys_cond(Z,append(X,Y,Z))).

^D

?- Y = [1,2]++[3].

Y = [1,2,3]

It is also possible to define rest expansion via the predicate rest_expansion/2 and to invoke
rest expansion via the predicate expand_rest/2. Rest expansion is applied to goal or term
arguments that are not goals or terms. Rest expansion is driven by meta function declara-
tions and can be block by the predicate property sys_nomacro.

Rest expansion might return a result of the form sys_cond(R, C) where C is the so-called
side condition. In the context of rest arguments, the side conditions are merged via conjunc-
tion to give a new side condition. In the context of a goal G, the condition C is prepended as
(C,G), in the context of a term T, the condition C is appended as (T:-C).

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 31 of 115

The following expansion results are recognized:

unit:
 An empty clause list.
C /\ D:
 A clause list of two clause lists C and D.
sys_cond(T, C):
 This result during rest expansion indicates rest T and a side condition C.

The following expansion predicates are provided:

term_expansion(C, D):
 This predicate can be used to define custom term expansion rules.
expand_term(C, D):

The system predicate succeeds if the expansion of the term C unifies with D.
goal_expansion(C, D):
 This predicate can be used to define custom goal expansion rules.
expand_goal(C, D):

The system predicate succeeds if the expansion of the goal C unifies with D.
rest_expansion(C, D):
 This predicate can be used to define custom rest expansion rules.
expand_rest(C, D):

The system predicate succeeds if the expansion of the rest C unifies with D.

The following predicate properties for clause expansion are provided:

sys_noexpand:
 The property indicates that the meta-predicate should not be traversed in goal or term

expansion. The property can be changed for user predicates.
sys_nomacro:
 The property indicates that the meta-function should not be traversed in rest expan-

sion. The property can be changed for user predicates.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 32 of 115

Module dcg

Definite clause grammars (DCG) are an extension of context free grammars [5]. DCGs allow
arbitrary tree structures to be built in the course of parsing and they allow extra conditions
dependent on auxiliary computations. A grammar rule can have one of the following two
forms. The second form is known as a push-back grammar rule, since it will complete with
re-installing R:

P -- > Q. % DCG rule without push back

P, R -- > Q. % DCG rule with push back

The term expansion augments the head by two additional parameters that are to represent
the sentence position before and after the non-terminal that is defined. A grammar head with
predicate identifier p/n will be turned into a normal Prolog head with predicate identifier
p/n+2. The new predicate identifier can be used in system predicates such as listing/1, spy/1,
etc... The outcome of this first expansion is basically:

phrase(P, I, O) : - phrase(Q, I, O).

phrase(P, I, O) : - phrase(Q, I, H), phrase(R, O, H).

The term expansion will then go to work and tackle the head of the new Prolog rule, whereas
the goal expansion will tackle the body. The goal expansion will introduce unifications (=)/2
here and then to keep the expansion steadfast. One requirement is that the two queries
phrase(G, I, O) and (phrase(G, I, H), H = O) should return the same results. This allows for
example for a consistent definition of phrase(G, I) as an expansion to phrase(G, I, []).

Example:

?- [user].

factor(X) -- > "(", expr(X), ")".

Yes

?- listing(factor/3).

factor(X, [40|A], B) : - expr(X, A, [41|B]).

We see in the example that the translation does not make use of the connection predicate
‘C’/3 for terminals. Instead terminals are directly based on the list definition of ‘C’/3 and trans-
lated into corresponding list equations. If possible these equations are merged into the head
or into the body goals of the grammar rule. This gives better performance but renders the
grammar mechanism not anymore customizable via ‘C’/3.

The following grammar rule predicates are provided. The (grammar) marking indicates that
this operator is only understood in the context of the push back or body position of the
grammar operator (-->)/2:

phrase(A, I, O):

Succeeds when the list I starts with the phrase A giving the remainder O. Can be
used for parsing when I is input and for un-parsing when I is output. The predicate is
multi-file and can be extended by the end-user.

phrase(A, I):
Succeeds when the list I starts with the phrase A giving the empty remainder.

P (grammar):
The grammar non-terminal P succeeds whenever the callable P extended by the cur-
rent input and output succeeds.

fail (grammar):
The grammar connective fails.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 33 of 115

A, B (grammar):
The grammar connective succeeds whenever A and B succeed. The output of A is
conjoined with the input of B.

A ; B (grammar):
The grammar connective succeeds whenever A or B succeeds. The goal arguments
A and B are cut transparent.

A -> B (grammar):
The grammar connective succeeds when A succeeds and then whenever B suc-
ceeds. The goal argument B is cut transparent. The output of A is conjoined with the
input of B. When used inside (;)/2 it is interpreted as if-then-else.

A *-> B (grammar):
The grammar connective succeeds whenever A succeeds and then whenever B suc-
ceeds. The goal argument B is cut transparent. The output of A is conjoined with the
input of B. When used inside (;)/2 it is interpreted as if-then-else.

[A1, …, An] (grammar):
The grammar connective succeeds when the terminals A1, …, An can be consumed.

! (grammar):
The grammar connective removes pending choice and then succeeds once.

{A} (grammar):
The grammar connective succeeds whenever the goal argument A succeeds. The
goal argument A is cut transparent and not grammar translated.

\+ A (grammar):
When the goal argument A succeeds, then the grammar connective fails. Otherwise
the grammar connective succeeds. The second argument is left loose.

The following grammar rule operators are provided. The (grammar) marking indicates that
this operator is only understood in the context of the head position of the grammar operator (-
->)/2:

P (grammar):

The grammar non-terminal P is defined with the callable P extended by the current
input and output.

H --> B:
The construct defines a grammar rule with grammar head H and grammar body B.

H, P --> B:
The construct defines a push back with grammar head H, push back P and grammar
body B.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 34 of 115

Module signal [preloaded]

The predicates call_cleanup/2 and setup_call_cleanup/3 install a choice point with a clean-up
goal. During a cut the current bindings are visible to the clean-up goal. During an exception
the bindings are undone before invoking the clean-up goal. The latter ternary predicate dif-
fers from the ISO proposal in that it accumulates errors and in that it throws an error when
the clean-up goal fails. The former binary predicate is not part of the ISO proposal.

Example:

?- call_cleanup((X = 1; X = 2),(write(X), write(' '))).

X = 1 ;

2 X = 2

?- call_cleanup((X = 1; X = 2),(write(X), write(' '))), !.

1 X = 1

Situations might demand that a secondary thread controls a primary thread. The program-
ming interface allows raising a soft signal in a primary Prolog thread from a secondary
thread. The method for this purpose is setSignal(). The effect on the primary Prolog thread
will be that the signal message is thrown as an error the first possible moment a call port is
reached.

The primary Prolog thread might be in a blocking operation. Therefore the method
setSignal() also interrupts the primary Prolog thread. The operations of the method
setSignal() are disabled as long as the mask flag is set to false. The mask flag can be read
off from the corresponding Prolog flag. It can be temporarily reset by the system predicate
sys_atomic/1.

The following signal handling predicates are provided:

call_cleanup(B, C):
 The predicate succeeds whenever B succeeds. Additionally the clean-up C is called

when B fails or deterministically succeeds. The clean-up C is also called when a cut
or an exception happens inside B or in the continuation.

sys_atomic(A):
 The predicate succeeds whenever A succeeds. The goal A is invoked with the signal

mask temporarily set to off.
setup_call_cleanup(A, B, C):
 The predicate succeeds when the setup A succeeds once and whenever B succeeds.

Additionally the clean-up C is called when B fails or deterministically succeeds. The
clean-up C is also called when a cut or an exception happens inside B or in the con-
tinuation. The setup A and the clean-up C are called with the signal mask temporarily
set to off.

The following Prolog flags for signal interception are provided:

sys_mask:
 Legal values are on and off. The flag indicates whether the interpreter currently ac-

cepts signals. Default value is on. The value can be changed.
sys_choices:

The current number of choice points. The value cannot be changed.
sys_variables:

The current serial number. The value cannot be changed.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 35 of 115

Module sort [preloaded]

The predicate sys_distinct/1 will remove duplicates from a list using a hash set in the current
implementation, thus relying only on equality among the elements. On the other hand the
predicate sort/2 will sort a list by using a tree in the current implementation and also requires
comparison among the elements.

Examples:

?- sys_distinct([2,1,3,1], X).

X = [2,1,3]

?- sort([2,1,3,1], X).

X = [1,2,3]

The predicate sys_keygroup/2 will key group a list using a hash table in the current imple-
mentation, thus relying only on equality among the keys. On the other hand the predicate
keysort/2 will key sort a list by using a tree in the current implementation, thus also requiring
comparison among the keys.

Examples:

?- hash_code(f, R).

R = 102

?- term_hash(f(X), 1, 1000, R).

R = 102

The hash code that is the basis for the removal and grouping predicates can be queried by
the predicates hash_code/2. The hash code is recursively computed along the structure of
the given term. The hash code that forms the basis of our clause indexing can be queried by
the predicates term_hash/[2,4].

The following set predicates are provided:

sort(L, R): [TC2 8.4.3]
 The predicate sorts the list L and unifies the result with R.
sys_distinct(L, R):
 The predicate removes duplicates from the list L and unifies the result with R.
keysort(L, R): [TC2 8.4.4]
 The predicate key-sorts the pair list L and unifies the result with R.
sys_keygroup(L, R):
 The predicate key-groups the pair list L and unifies the result with R.
hash_code(T, H):
 The predicate succeeds when H unifies with the hash code of T. The term T need not

be ground. The hash will be in the range from -2147483648 to 2147483647.
term_hash(T, H):
term_hash(T, D, R, H):

The predicate succeeds when T is ground and when H unifies with the hash code of
T. The predicate also succeeds when T is non-ground, the H argument is then simply
ignored. The quinary predicate allows specifying a depth D and a modulus R. A nega-
tive depth D is interpreted as infinity.

locale_sort(L, R):
locale_sort(C, L, R):

The predicate local sorts the list L and unifies the result with R. The ternary predicate
allows specifying a locale C.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 36 of 115

locale_keysort(L, R):
locale_keysort(C, L, R):

The predicate locale key-sorts the pair list L and unifies the result with R. The ternary
predicate allows specifying a locale C.

Compatibility Matrix

t.b.d.

Table 4: Compatibility Matrix for the Standard Package

Nr Description System

1 Predicate indicator N//A is shortcut for N/A+2. DCGD [3]

2 fail/0 is not a grammar construct. DCGD

3 The call/1 grammar construct does not suspend. DCGD

4 The phrase/3 is not automatically expanded. DCGD

5 ‘|’/2 is a grammar construct. DCGD

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 37 of 115

5.2 Basic Package [partially preloaded]
This package contains basic predicates that are partly already used by the Prolog interpreter
itself. Many of the following modules provide persistent data structures. These are data struc-
tures that preserve their previous version if modified. The following modules are provided:

 Module lists: This module provides persistent lists.

 Module random: This module provides random number generators.

 Module hyper: This module provides hyperbolic functions.

 Module proxy: This module allows turning a Prolog text into a Java class.

 Module array: This module provides delegates for Java arrays.

 Module utility [preloaded]: This module provides help utilities.

 Method score: This module provides test predicates for Java objects.

 Compatibility Matrix: t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 38 of 115

Module lists

This module provides persistent lists. Prolog Lists are written as [x1,..,xn] and are internally
constructed by the pairing constructor [h|t] and the empty constructor []. The length of such a
list is n and the i-th element is xi. Most predicates are implemented such that they leave as
few as possible choice points.

Example:

?- last([1,2,3], X).

X = 3

?- last([1,2,3], X, Y).

X = 3,

Y = [1,2]

The predicates append/3, reverse/2, member/2, select/3, last/2 and last/3 work directly with
lists. The predicates length/2, nth0/3, nth0/4, nth1/3 and nth1/4 take also a length respective
index into account. The predicates maplist/n and foldl/n have a closure argument to apply a
predicate repeatedly to a number of arguments.

The following list predicates are provided:

append(L1, L2, L3):
 The predicate succeeds whenever L3 unifies with the concatenation of L1 and L2.
reverse(L1, L2):
 The predicate succeeds whenever L2 unifies with the reverse of L1. The current im-

plementation does not terminate on redo for an input L2 and an output L1.
member(E, L):
 The predicate succeeds for every member E of the list L.
select(E, L, R):
 The predicate succeeds for every member E of the L with remainder list R.
last(L, E):

The predicate succeeds with E being the last element of the list L.
last(L, E, R):

The predicate succeeds with E being the last element of the list L and R being the
remainder of the list.

length(L, N):
 The predicate succeeds with N being the length of the list L.
nth0(I, L, E):

The predicate succeeds with E being the (I+1)-th element of the list L.
nth0(I, L, E, R):

The predicate succeeds with E being the (I+1)-th element of the list L and R being the
remainder of the list.

nth1(I, L, E):
The predicate succeeds with E being the I-th element of the list L.

nth1(I, L, E, R):
The predicate succeeds with E being the I-th element of the list L and R being the
remainder of the list.

maplist(C, L1, ..., Ln):
The predicate succeeds in applying the closure C to the elements of L1, ..., Ln. The
predicate is currently defined for 1 ≤ n ≤ 4.

foldl(C, L1, ..., Ln, I, O):
The predicate succeeds in applying the closure C to the elements of L1, ..., Ln and ac-
cumulating the result among I and O. The predicate is currently defined for 1 ≤ n ≤ 4.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 39 of 115

Module random

The evaluable functions random/0 and random/1 generate uniformly distributed members of
the arithmetic domains. Each knowledge base has its own pre-allocated random number
generator which can be accessed concurrently. Random number generator objects can be
created with the predicates random_new/1 and random_new/2.

Examples:

 random -- > 0.6011883752343405

 random(100) -- > 61

The result type of the evaluable function random/0 is always a Prolog float, which amounts to
a Java double. The result type of the evaluable function random/1 reflects the type of the
argument. The predicates random_next/2 and random_next/3 do the same, except that they
take an additional random number generator object as a first parameter.

The predicate ticket_new/1 can be used to create a counter whch will be initialized to zero.
The counter can then be incremented via the predicate counter_next/2 whereby the old value
is returned. The later predicate is implemented with the help of an atomic integer.

The following random numbers evaluable functions are provided:

random(F):

The predicate succeeds for a continuous uniform random number F in the interval
[0..1) from the knowledgebase random number generator.

random(M, N):
The predicate succeeds for a uniform random number N in the interval [0..M) for M>0
from the knowledgebase random number generator. The distribution is discrete when
M is discrete and continuous otherwise.

The following random numbers predicates are provided:

random_new(R):

The predicate succeeds for a new random number generator R with a randomized
seed.

random_new(S, R):
The predicate succeeds for a new random number generator R with seed S.

random_next(R, F):
The predicate succeeds for a continuous uniform random number F in the interval
[0..1) from the random number generator R.

random_next(R, M, N):
The predicate succeeds for a uniform random number N in the interval [0..M) for M>0
from the random number generator R. The distribution is discrete when M is discrete
and continuous otherwise.

counter_new(C):
The predicate succeeds for a new counter C.

counter_next(C, V):
The predicate succeeds for incrementing the counter C and unifying the old value V.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 40 of 115

random_permutation(L, R):
random_permutation(G, L, R):

The predicate succeeds in R with a random permutation of L. The ternary predicate
allows specifying a random generator G.

The following random number Prolog flags are provided:

sys_random:
 Legal values are instances of the Java class java.util.Random. The flag is the random

number generator for the knowledge base. The flag can be changed.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 41 of 115

Module hyper

This module provides hyperbolic functions. The evaluable functions sinh/1, cosh/1 and tanh/1
compute the hyperbolic sinus, cosine and tangent respectively. The evaluable functions
asinh/1, acosh/1 and atanh/1 compute their inverse.

The following hyper evaluable functions are provided:

sinh(X):

Returns the float representation of the hyperbolic sinus of X.
cosh(X):

Returns the float representation of the hyperbolic cosine of X.
tanh(X):

Returns the float representation of the hyperbolic tangent of X.
asinh(X):

Returns the float representation of the arcus hyperbolic sinus of X.
acosh(X):

Returns the float representation of the arcus hyperbolic cosine of X.
atanh(X):

Returns the float representation of the arcus hyperbolic tangent of X.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 42 of 115

Module proxy

This module provides predicates to automatically turn a Prolog text into a Java class. The
Java class will be a Java proxy class generated for a set of interfaces. The set of interfaces
is collected from the re-exported auto loaded Java classes of the given Prolog text. The Java
proxy class is generated when an instance of the Java proxy class is requested by the predi-
cate sys_new_instance/2:

Example:

: - module(mycomparator , []).

: - reexport(foreign(java/util/'Comparator')).

: - public new/1.

new(X) : - sys_ new_instance(mycomparator, X). % define the constructor

: - override compare/4.

: - public compare/4.

compare(_, X, Y, R) : - ... % define the method

The predicate and evaluable functions of the Prolog text will be used for the execution of the
methods on the Java proxy instance. Only methods that belong to the set of interfaces can
be invoked directly from Java on the Java proxy instances. If the set of interfaces contains
the Java interface InterfaceSlots the proxy instances should be created with the predicate
sys_new_instance/3 instead of the predicate sys_new_instance/2.

Example:

?- sys_subclass_of(java/util/'Comparator' , mycomparator).

Yes

?- mycomparator:new(X), sys_instance_of(X, java/util/'Comparator').

X = 0r709d5f9e

?- mycomparator:new(X), X::compare(7,7,Y).

X = 0r43dd69,

Y = 0

The re-export chain of Prolog modules and auto loaded Java classes defines a module tax-
onomy. The module taxonomy can be tested by the predicate sys_assignable_from/2, which
checks whether one module is derived from another module. Further Java Prolog proxy in-
stances, instances directly created from within Java and Prolog callables can be tested with
the predicate sys_instance_of/2.

The following proxy predicates are provided:

sys_new_instance(M, R):

The predicate succeeds for a stateless instance R of the Java proxy class for the
Prolog module M.

sys_new_instance(M, S, R):
The predicate succeeds for a state-full instance R of size S of the Java proxy class for
the Prolog module M.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 43 of 115

sys_assignable_from(M, N):
The predicate succeeds when M is a subclass of N. N and M can be either class ref-
erences or module names.

sys_instance_of(O, N):
The predicate succeeds when O is an instance of N. O can be a reference or callable.
N can be either a class reference or a module name.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 44 of 115

Module array

This module provides delegates that allow to access and modify Java arrays. Foreign predi-
cates can be registered by one of the directives foreign_dimension/2, foreign_element/2 and
foreign_update/2. Foreign evaluable functions can be registered by one of the directives
foreign_length/2 or foreign_member/2.

Syntax:

directive -- > "foreign_dimension(" indicator "," module ")"

 | "foreign_element(" indicator "," module ")"

 | "foreign_update(" indicator "," module ") "

 | "foreign_length(" indicator "," module ")"

 | "foreign_member(" indicator "," module ")".

Example:

: - foreign_dimension(new/2, int[]).

As a convenience we have defined the postfix operator [] and the path resolution under-
stands this syntax to find Java array classes. When accessing or modifying array elements
the delegates will see to it that the values are automatically normalized or de-normalized
Prolog terms. The supported data types are the same as in the ordinary foreign function in-
terface.

The following array predicates are provided:

foreign_dimension(I, C):

Succeeds with registering the predicate indicator I as a foreign array constructor for
the array class C.

foreign_element(I, C):
Succeeds with registering the predicate indicator I as a foreign array element getter
for the array class C.

foreign_update(I, C):
Succeeds with registering the predicate indicator I as a foreign array element setter
for the array class C.

foreign_length(I, C):
Succeeds with registering the predicate indicator I as a foreign array length getter for
the array class C.

foreign_member(I, C):
Succeeds with registering the predicate indicator I as a foreign array numeric element
getter for the array class C.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 45 of 115

Module utility [Preloaded]

This module provides help utilities. The predicate apropos/1 allows listing the advertised
predicates. The lists are available independent whether a module is loaded or not. The lists
are taken from the successfully activated and still registered capabilities.

Example:

?- apropos(time).

Indicator Module

get_time/1 system/shell

get_time/2 system/shell

get_time_file/2 system/file

set_time_file/2 system/file

time_out/2 misc/time

time/1 swing/stats

The following utility predicates are provided:

apropos(P):

The predicate succeeds in listing the public predicates on the terminal that are
advertised by the loaded capabilities and that contain the given atom P in their name.

sys_apropos_table(T):
The predicate succeeds in T with the file name of a apropos table.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 46 of 115

Module score

Foreign predicates can be automatically generated when a Java class is loaded. The module
loader will proceed in that it will analyse the Java class and automatically collect all the Java
methods and Java fields and generate foreign predicates for them. For Java methods that
were overloaded the module loader will generate branching code.

Example:

?- system/automatic:generated('String':valueOf/2).

% String.class

: - package(foreign(java/lang)).

: - module('String', []).

..

: - public valueOf/2.

valueOf(A, B) : -

 sys_boolean(A), !,

 valueOf_var0(A, B).

valueOf(A, B) : -

 sys_char16(A), !,

 valueOf_var1(A, B).

..

The branching code uses a type check and then a cut. The type checks go beyond what the
core standard defines as type checks. Since Java uses expression infered types and we
have only value manifest types, we pursue the strategy that we look at the magnitude of a
value. This explains for example the variety of test predicates such as sys_integer8/1 and
sys_integer16_and_not_integer8/1 defined here.

The following predicates for the module score are provided:

sys_boolean(X):

The predicate succeeds when X is an atom from the set {true, false}.
sys_integer8(X):
 The predicate succeeds when X is an integer and X is in the range - 2^7 to 2^7-1.
sys_char16(X):

The predicate succeeds when X is a character and X is in the range of 0 to 2^16-1.
sys_integer16(X):
 The predicate succeeds when X is an integer and X is in the range - 2^15 to 2^15-1.
sys_integer32(X):
 The predicate succeeds when X is an integer and X is in the range - 2^31 to 2^31-1.
sys_integer64(X):
 The predicate succeeds when X is an integer and X is in the range - 2^63 to 2^63-1.
sys_integer32_or_float32(X):
 The predicate succeeds when X is an 32-bit integer or a 32-bit float.
sys_integer64_or_float(X):
 The predicate succeeds when X is an 64-bit integer or a float.
sys_integer16_and_not_integer8(X):
 The predicate succeeds when X is an 16-bit integer but not an 8-bit integer.
sys_integer32_and_not_integer16(X):
 The predicate succeeds when X is an 32-bit integer but not an 16-bit integer.
sys_integer64_and_not_integer32(X):
 The predicate succeeds when X is an 64-bit integer but not an 32-bit integer.
sys_integer_and_not_integer64(X):
 The predicate succeeds when X is an integer but not an 64-bit integer.
sys_atom_or_type_of(C, X):
 The predicate succeeds when X is an atom or an instance of C.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 47 of 115

sys_type_of(C, X):
 The predicate succeeds when X is an instance of C.

The following predicate properties for method branching are provided:

sys_automatic:

The foreign function was automatically added by the Java class auto loader. The
property can be missing. The property can be modified.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 48 of 115

Compatibility Matrix

t.b.d.

Table 5: Compatibility Matrix for the Basic Package

Nr Description System

1 t.b.d.

2 t.b.d.

3 t.b.d.

4 t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 49 of 115

5.3 Advanced Package
This package contains advanced predicates that can be used in various Prolog applications.
Many of the following modules provide persistent data structures. These are data structures
that preserve their previous version if modified. The following modules are provided:

 Module arith: This module provides additional integer predicates.

 Module sets: This module provides persistent unordered sets.

 Module ordsets: This module provides persistent ordered sets.

 Module sequence: This module provides solution sequence shaping.

 Module aggregate: This module provides aggregate predicates.

 Compatibility Matrix: t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 50 of 115

Module arith

This module provides additional number predicates. The predicates between/3 and above/2
allow enumerating numbers in a given range by the unit step. For both predicates the type of
the result is the type of the lower bound. The predicate above/2 doesn't have an upper bound
and will return numbers forever.

Examples:

?- between(1, 3, X).

X = 1 ;

X = 2 ;

X = 3

?- between(1, 3, 4).

No

The predicates plus/3 and succ/2 allow solving primitive numeric addition equations. These
predicates will not enumerate solutions, but they will work in different modes. The predicate
plus/3 requires at least two instantiated arguments and the predicate succ/2 requires at least
one instantiated argument.

The following arith predicates are provided:

between(L, H, X):

The predicate succeeds in unit steps for every number X between the two numbers L
and H.

above(L, X):
The predicate succeeds in unit steps for every number X above the number L.

plus(A, B, C):
The predicate succeeds for numbers A, B and C such that A+B =:= C. At least two
arguments have to be instantiated.

succ(A, B):
The predicate succeeds for numbers A and B such that A+1 =:= B. At least one ar-
guments has to be instantiated.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 51 of 115

Module sets

This module provides unordered sets. The unordered sets are represented by lists [x1, .., xn].
The lists need not to be ordered or duplicate free. But the provided operations do not neces-
sarily preserve duplicates.

Examples:

?- union([2,3,4],[1,2,4,5],X).

X = [3,1,2,4,5]

?- union([1,2,4,5],[2,3,4],X).

X = [1,5,2,3,4]

The realization uses a membership check based on (==)/2. As a result the predicates are
safe to be used with non-ground terms. On the other hand, since this comparison is not
arithmetical, 1 and 1.0 are for example considered different.

The following unordered sets predicates are provided:

contains(E, S):

The predicate succeeds when the set S contains the element E.
remove(E, S, T):

The predicate succeeds when the set S contains the element E and T is the set with-
out the element.

difference(S1, S2, S3):
The predicate succeeds when S3 unifies with the difference of S1 by S2.

intersection(S1, S2, S3):
The predicate succeeds when S3 unifies with the intersection of S1 and S2.

union(S1, S2, S3):
The predicate succeeds when S3 unifies with the union of S1 and S2.

subset(S1, S2):
The predicate succeeds when S1 is a subset of S2.

permutation(S1, S2):
The predicate succeeds when S1 is a permutation of S2.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 52 of 115

Module ordsets

This module provides ordered sets. The ordered sets are represented by lists [x1, .., xn]. The
lists must be ordered and duplicate free. If this precondition is violated the behaviour of the
predicates is undefined.

Examples:

?- ord_union([2,3,4],[1,2,4,5],X).

X = [1,2,3,4,5]

?- ord_union([1,2,4,5],[2,3,4],X).

X = [1,2,3,4,5]

The realization uses a membership check based on (==)/2 and lexical ordering based on
(@<)/2. As a result the predicates are safe to be used with non-ground terms. On the other
hand, since this comparison is not arithmetical, 1 and 1.0 are for example considered differ-
ent.

An unordered set can be converted into an ordered set by using the ISO predicate sort/2.
Also there is no need for predicate permutation/2 here, since equality of ordered sets can be
tested via the ISO predicate ==/2, provided the elements are sufficiently normalized.

The following ordered sets predicates are provided:

ord_contains(E, O):

The predicate succeeds when the set O contains the element E.
ord_difference(O1, O2, O3):

The predicate succeeds when O3 unifies with the difference of O1 by O2.
ord_intersection(O1, O2, O3):

The predicate succeeds when O3 unifies with the intersection of O1 and O2.
ord_union(O1, O2, O3):

The predicate succeeds when O3 unifies with the union of O1 and O2.
ord_subset(O1, O2):

The predicate succeeds when O1 is a subset of O2.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 53 of 115

Module sequence

This module is inspired by SQL query options such as TOP. Providing such a module was
recently pioneered by SWI-Prolog. Currently predicates limit/2 and offset/2 are provided. The
predicates solely work tuple oriented and it is possible to cascade these predicates:

Example:

?- limit(5, offset(3, between(1, 10, X))).

X = 4 ;

X = 5 ;

X = 6 ;

X = 7 ;

X = 8

The current implementation is based on call_nth/2, which is also provided through this
module. call_nth/2 is in turn implemented with pivots, an alternative to nb_setarg/3 which
does not destruct a Prolog term, but instead a Java object.

The following sequence predicates are provided:

limit(C, G):

The predicate succeeds whenever the goal G succeeds but limits the number of solu-
tions to C.

offset(C, G):
The predicate succeeds whenever the goal G succeeds except for the first C solu-
tions which are suppressed.

call_nth(G, C):
The predicate succeeds whenever G succeeds and unifies C with the numbering of
the successes.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 54 of 115

Module aggregate

The aggregate predicates take a set of solutions and compute an aggregate on it. The predi-
cate aggregate_all/3 aggregates the solution that is produced by findall/3. The predicate ag-
gregate/3 respectively sys_collect/3 aggregates the solutions that are produced by bagof/3
respectively sys_heapof/3.

Examples:

?- [user].

p(4,5).

p(1,2).

p(1,3).

Yes

?- aggregate((sum(X),count),p(Y,X),R).

Y = 4,

R = (5,1) ;

Y = 1,

R = (5,2)

The implementation of aggregate_all/3 takes advantage of pivots introduced in the module
sequence. The other aggregate predicates take advantage of a map from variant terms to
pivots. The memory usage is therefore proportional to the number of variant terms.

The following aggregate predicates are provided:

aggregate_all(A, G, S):
 The predicates aggregates the aggregate A for the solutions of G and unifies the re-

sult with S. The following aggregates are recognized:

 count: The result is the number of solutions.
 sum(X): The result is the sum of the X values.
 mul(X): The result is the product of the X values.
 min(X): The result is the minimum of the X values.
 max(X): The result is the maximum of the X values.
 (A,B): The result is the pairing of the aggregate A and B.

aggregate(A, X1^…^Xn^G, S):

The predicates aggregates the aggregate A for the solutions of G and unifies the
result with S. The result is sorted by the witnesses.

sys_collect(A, X1^…^Xn^G, S):
The predicates aggregates the aggregate A for the solutions of G and unifies the
result with S. The result is grouped by the witnesses.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 55 of 115

Compatibility Matrix

The following compatibility issues persist for the advanced package:

Table 6: Compatibility Matrix for the Advanced Package

Nr Description System

1 t.b.d. t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 56 of 115

5.4 Experiment Package [partially preloaded]
This package contains experimental predicates that deliver some alternative or extended
realizations of commonly found predicates. The following modules are provided:

 Module maps: The module provides unordered maps.

 Module simp [preloaded]: Simplification during expansion.

 Module abstract: An alternate variant of lambda expressions.

 Module ordmaps: The module provides ordered maps.

 Module ref: Each clause has a unique reference.

 Compatibility Matrix: t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 57 of 115

Module maps

This module provides unordered maps. The unordered maps are represented by lists of key
value pairs [k1-v1, .., kn-vn]. The lists need not be key ordered or key duplicate free. During
operations for duplicates the first key wins:

Examples:

?- get([2 - a,1 - b], 1, X).

X = b

?- put([2 - a,1 - b], 1, c, X).

X = [2 - a,1 - c]

The realization uses a membership check based on (==)/2. As a result the predicates are
safe to be used with non-ground terms. On the other hand, since this comparison is not
arithmetical, 1 and 1.0 are for example considered different.

The following maps predicates are provided:

get(M, K, V):

The predicate succeeds for the value V associated with the key K in the map M.
put(M, K, V, N):

The predicate succeeds for a map N where the value V is associated with the key K
and the other key values are associated as in the map M.

remove(M, K, N):
The predicate succeeds for a map N where the key K has no value and the other key
values are associated as in the map M.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 58 of 115

Module simp [preloaded]

The body conversion only caters for wrapping variables into call/1. It is possible to implement
further heuristics be explicitly calling expand_term/2 respectively expand_goal/2 during
asserts or calls. By this module it is arranged that simplify_term/2 respectively
simplify_goal/2 are called after the expansion. The predicates are customizable by the end-
user via term_simplification/2 respectively goal_simplification/2.

Example:

?- [user].

goal_expansion((X is E), true) : - ground(E), X is E.

test(Y) : - X is 1+2, Y is 4*X.

^D

?- listing(test/1).

test(12).

There are situations where the compile-time heuristics have to be undone to make them
transparent. For example when listing clauses or debugging goals. The predicates
rebuild_term/2 respectively rebuild_goal/2 are responsible for undoing expansions and sim-
plifications. The rebuilding uses the same flags as the expansion and as well customizable
via term_rebuilding/2 respectively goal_rebuilding/2.

The following term simplification predicates are provided:

term_simplification(C, D):
 This predicate can be used to define custom term simplification rules.
simplify_term(C, D):

The system predicate succeeds if the simplification of the term C unifies with D.
goal_simplification(C, D):
 This predicate can be used to define custom goal simplification rules.
simplify_goal(C, D):

The system predicate succeeds if the simplification of the goal C unifies with D.
rest_simplification(C, D):
 This predicate can be used to define custom rest simplification rules.
simplify_rest(C, D):

The system predicate succeeds if the simplification of the rest C unifies with D.
term_rebuilding(C, D):
 This predicate can be used to define custom term rebuilding rules.
rebuild_term(C, D):
 The system predicate succeeds if the rebuild of the term C unifies with D.
goal_rebuilding(C, D):
 This predicate can be used to define custom goal rebuilding rules.
rebuild_goal(C, D):
 The system predicate succeeds if the rebuild of the goal C unifies with D.
rest_rebuilding(C, D):
 This predicate can be used to define custom rest rebuilding rules.
rebuild_rest(C, D):
 The system predicate succeeds if the rebuild of the rest C unifies with D.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 59 of 115

Module abstract

Jekejeke Prolog also provides a simple denotation for lambda abstraction. We use the opera-
tor (\)/2 to denote abstracted terms and the operator (^)/2 to denote local terms. We can de-
scribe the lambda abstraction via the following syntax:

abstraction -- > binder " \ " body_with_local.

body_with_local -- > local "^" body_with_local.

 | body.

binder -- > term.

local -- > term.

It is possible to abstract goals and closures. The result is a new closure with an incremented
closure index. The binder can be an arbitrary term, which allows pattern matching. The local
can be an arbitrary term as well, which allows combining multiple local variables. The global
variables of a lambda abstraction are aliased along invocations.

Examples:

?- map(X\ Y\ (H is X+1, Y is H*H),[1,2,3],R).

No % Aliasing prevents success.

?- map(X\ Y\ H^(H is X+1, Y is H*H),[1,2,3],R).

R = [4,9,16] % Now everything is fine.

When a lambda abstraction is invoked the binder is replaced by the argument. In normal
lambda calculus the global variables of the argument can clash with further binders in the
body. In our implementation it can also happen that binders, local variables and global varia-
bles can clash. Local variables can be used to prevent clashes by renaming variables:

Examples:

?- K=X\ Y\ =(X), call(K,Y,B,R).

K = X \ Y\ =(X),

B = R % Clash gives wrong result.

?- K=X\ Y^Y\ =(X), call(K,Y,B,R).

K = X \ Y^Y\ =(X),

R = Y % Now everything is fine.

The following abstract predicates are provided:

\(X, A, Y1, .., Yn):

The predicate is defined for 1 ≤ n ≤ 7. The goal \(X, A, Y1, .., Yn) succeeds whenever
the goal call(A[X/Y1], Y2, ..., Yn) succeeds.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 60 of 115

Module ordmaps

This module provides ordered maps. The ordered maps are represented by lists of key value
pairs [k1-v1, .., kn-vn]. The lists need to be key ordered and key duplicate free. If this precondi-
tion is violated the behaviour of the predicates is undefined:

Examples:

?- ord_get([1 - a,2 - b], 2, X).

X = b

?- ord_put([1 - a,2 - b], 2, c, X).

X = [1 - a,2 - c]

The realization uses a membership check based on (==)/2 and lexical ordering based on
(@<)/2. As a result the predicates are safe to be used with non-ground terms. On the other
hand, since this comparison is not arithmetical, 1 and 1.0 are for example considered differ-
ent.

An unordered map can be converted into an ordered map by using the ISO predicate
keysort/2. Also there is no need for predicate permutation/2 here, since equality of ordered
maps can be tested via the ISO predicate ==/2, provided the keys and values are sufficiently
normalized.

The following ordered maps predicates are provided:

ord_get(M, K, V):

The predicate succeeds for the value V associated with K in the ordered map M.
ord_put(M, K, V, N):

The predicate succeeds for an ordered map N where the value V is associated with
the key K and the other key values are associated as in the ordered map M.

ord_remove(M, K, N):
The predicate succeeds for an ordered map N where the key K has no value and the
other key values are associated as in the ordered map M.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 61 of 115

Module ref

The predicates assertable_ref/2 and assumable_ref/2 allow the compilation of a clause with-
out any thread contention. The clause can be associated and de-associated with the head
predicate via the predicates recorda_ref/1, recordz_ref/1 and erase_ref/1 whereby only one
thread will win. A new instance of the original clause can be retrieved again by the predicate
compiled_ref/2.

The predicate clause_ref/3 can be used to find a clause in the knowledge base. This predi-
cate respects the logical view approach form the ISO core Prolog standard. The predicate
will further filter and only return those clauses that are visible from the head predicate that is
used in the search. The predicate additionally returns clauses that can be used with the other
predicates here.

The predicates ref_property/2, set_ref_property/2 and reset_re_property/2 allow inspecting
and modifying clause properties. Clause references might not only refer to clauses, they im-
plement a more general base class. Clause references are for example used in the Jekejeke
Minlog extension to refer to attributed variable slots.

The following clause reference predicates are provided:

assertable_ref(C, R):

The predicate compiles the term C into a new clause reference R. An undefined or
unimplemented head predicate will be turned into a dynamic predicate. Otherwise the
head predicate must be dynamic or thread local.

assumable_ref(C, R):
The predicate compiles the term C into a new clause reference R. An undefined or
unimplemented head predicate will be turned into a thread local predicate. Otherwise
the head must be dynamic or thread local.

recorda_ref(R):
The predicate inserts the clause referenced by R at the top. The predicate fails when
the clause has already been recorded.

recordz_ref(R):
The predicate inserts the clause referenced by R at the bottom. The predicate fails
when the clause has already been recorded.

erase_ref(R):
The predicate removes the clause referenced by R. The predicate fails when the
clause has already been erased.

compiled_ref(R, C):
The predicate returns a copy of the term C that was compiled into the clause refer-
ence R.

clause_ref(H, B, R):
The predicate succeeds with the user clauses that match H :- B and the clause refer-
ence R of the user clause. The head predicate must be dynamic or thread local.

clause_ref(C, R):
The predicate succeeds with the user clauses that match C and the clause reference
R of the user clause. The head predicate must be dynamic or thread local.

ref_property(R, P):
The predicate succeeds for the properties P of the reference R.

set_ref_property(R, P):
The predicate assigns the property P to the reference R.

reset_ref_property(R, P):
The predicate de-assigns the property P from the reference R.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 62 of 115

Compatibility Matrix

t.b.d.

Table 7: Compatibility Matrix for the Standard Package

Nr Description System

1 t.b.d.

2 t.b.d.

3 t.b.d.

4 t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 63 of 115

5.5 Stream Package [partially preloaded]
This theory is concerned with input/output and the selection of streams. The modules of the
package are nameless and preloaded. They don’t needed to be loaded and cannot be load-
ed by the end-user. We find the following topics:

 Module char [preloaded]: Characters can be input / output from / to text streams.

 Module byte [preloaded]: Bytes can be input / output from / to binary streams.

 Module term [preloaded]: Terms can be input / output from / to text streams.

 Module stream [preloaded]: Predicates to select and control streams.

 Module console: Predicates to address the console.

 Module xml: This module provides generation and parsing of XML texts.

 Compatibility Matrix: ISO/DEC10 compatibility issues of the stream theory.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 64 of 115

Module char [Preloaded]

Characters can be written to text streams or read from text streams. Text streams can be
obtained by the to open/3 and open/4 system predicates documented in the stream control
section. The standard output and/or the standard input might also point to text streams, but
this is not guaranteed. Text streams are automatically flushed when the new line primitive is
invoked. Additionally the text stream of the console window is automatically flushed when
more than 1024 characters have been written.

The following character input/output predicates are provided:

nl: [ISO 8.12.3]
nl(T): [ISO 8.12.3]
 The predicate without arguments writes the system end of line sequence to the

standard output and flushes it. The unary predicate takes an additional text stream
sink as argument.

put_char(C): [ISO 8.12.3]
put_char(T, C): [ISO 8.12.3]
 The unary predicate writes the character C to the standard output. The binary predi-

cate takes an additional text stream sink as argument.
put_code(C): [ISO 8.12.3]
put_code(T, C): [ISO 8.12.3]
 The unary predicate writes the code C to the standard output. The binary predicate

takes an additional text stream sink as argument.
peek_char(C): [ISO 8.12.2]
peek_char(T, C): [ISO 8.12.2]
 The unary predicate reads a character from the standard input and puts it back. The

predicate succeeds when C unifies with the peeked character or the atom end_of_file
when the end of the stream has been reached. The binary predicate takes an addi-
tional text stream source as argument.

peek_code(C): [ISO 8.12.2]
peek_code(T, C): [ISO 8.12.2]
 The predicate reads a code from the standard input and puts it back. The predicate

succeeds when C unifies with the read code or the integer -1 when the end of the
stream has been reached. The binary predicate takes an additional text stream
source as argument.

get_char(C): [ISO 8.12.1]
get_char(T, C): [ISO 8.12.1]
 The predicate reads a character from the standard input. The predicate succeeds

when C unifies with the read character or the atom end_of_file when the end of the
stream has been reached. The binary predicate takes an additional text stream
source as argument.

get_code(C): [ISO 8.12.1]
get_code(T, C): [ISO 8.12.1]
 The predicate reads a code from the standard input. The predicate succeeds when C

unifies with the read code or the integer -1 when the end of the stream has been
reached. The binary predicate takes an additional text stream source as argument.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 65 of 115

Module byte [Preloaded]

Bytes can be written to binary streams or read from binary streams. Binary streams can be
obtained by the to open/3 and open/4 system predicates documented in the stream control
section. The standard output and/or the standard input might also point to binary streams,
but this is not guaranteed.

Text streams and binary streams share the notion of flushing and end of stream. Therefore
the system predicates flush_output/[0,1] and at_end_of_stream/[0,1] apply to both text
streams and binary streams.

The following byte input/output predicates are provided:

put_byte(B): [ISO 8.13.3]
put_byte(H, B): [ISO 8.13.3]
 The unary predicate writes the byte B to the standard output. The binary predicate

takes an additional binary stream sink as argument.
get_byte(B): [ISO 8.13.1]
get_byte(H, B): [ISO 8.13.1]
 The predicate reads a byte from the standard input. The predicate succeeds when B

unifies with the read byte or the integer -1 when the end of the stream has been
reached. The binary predicate takes an additional binary stream source as argument.

peek_byte(B): [ISO 8.13.2]
peek_byte(H, B): [ISO 8.13.2]
 The predicate reads a byte from the standard input and puts it back. The predicate

succeeds when B unifies with the read byte or the integer -1 when the end of the
stream has been reached. The binary predicate takes an additional binary stream
source as argument.

flush_output: [ISO 8.11.7]
flush_output(S): [ISO 8.11.7]
 The predicate without arguments flushes the standard output. The unary predicate

takes an additional text or binary stream sink as argument.
at_end_of_stream: [ISO 8.11.8]
at_end_of_stream(S): [ISO 8.11.8]
 The predicate without arguments checks whether we are at the end of the standard

input. The unary predicate takes an additional text or binary stream sink as argument.
read_block(L, B):
read_block(I, L, B):

The predicate succeeds in a block B in reading maximally L bytes from I.
write_block(B):
write_block(O, B):

The predicate succeeds in writing the byte block B to O.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 66 of 115

Module term [Preloaded]

Terms can be written to text streams or read from text streams depending on the current op-
erator definitions. It is possible to switch off operator usage by the write option ignore_ops/1.
Further during writing variables and atoms are put into quotes when necessary. It is possible
to switch on quoting by the write option quoted/1.

Finally terms of the form ‘$VAR’(<number>) are usually recognized and written out as <var>.
It is possible to switch on the variable numbering by the write option numbervars/1. The
Prolog system also supports '$STR'(<atom>) terms to represent strings and can read or write
them as quoted strings.

Table 8: Predefined Write Predicates

Predicate numbervars quoted ignore_ops

write Yes No No

writeq Yes Yes No

write_canonical No Yes Yes

The spacing is determined by the context type option. The context type ‘?’ minimizes the
spacing. The other context types use spacing for the current compound and they also deter-
mine which meta-declaration should be looked up in case of a closure. Here are some ex-
amples whereby we assume a meta_predicate declaration solve(0):

Table 9: Context Dependent Spacing

Context Example 1

? solve((_A,_B)):-solve(_A),solve(_B)

0 or -1 solve((_A, _B)) :- solve(_A), solve(_B)

If the format option is newline then the spacing is enhanced by new lines and further spaces
so that the output matches the Prolog coding guidelines as published in [9]. Further the pri-
ority option determines whether parentheses are needed around an operator expressions
depending on the level of the operator.

When double quotes or back quotes are set to ‘variable’ and quote is true, then variable
names are automatically set into the corresponding quotes when necessary. If neither double
quotes nor back quotes are set to ‘variable’, then the predicates write_term/[2,3] throw an
error if a variable name would need quotes.

The following term input/output predicates are provided:

write(E): [ISO 8.14.2]
write(T, E): [ISO 8.14.2]
 The unary predicate writes the term E to the standard output whereby numbering var-

iables. The binary predicate takes an additional text stream sink as argument.
writeq(E): [ISO 8.14.2]
writeq(T, E): [ISO 8.14.2]
 The predicate writes the term E to the standard output whereby quoting atoms and

variables if necessary. The binary predicate takes an additional text stream sink as
argument.

write_canonical(E): [ISO 8.14.2]
write_canonical(T, E): [ISO 8.14.2]
 The predicate writes the term E to the standard output whereby quoting atoms and

variables if necessary and ignoring operator declarations. The binary predicate takes
an additional text stream sink as argument.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 67 of 115

write_term(E, O): [ISO 8.14.2]
write_term(T, E, O): [ISO 8.14.2]
 The predicate writes the term E to the standard output taking into account the write

options O. The ternary predicate takes an additional text stream sink as argument.
The following write options are available:

 quoted(B): [ISO] If B then functors are quoted if necessary.

 numbervars(B): [ISO] If B then compounds ‘$VAR’(I) are written as variables.
 ignore_ops(B): [ISO] If B then functors are not interpreted as operators.
 variable_names(N): N are the variable names.
 context(C): C is the meta-argument specifier.
 format(F): F is the write format.
 priority(P): P is the write priority.
 double_quotes(U): U is the parsing of double quotes.
 back_quotes(U): U is the parsing of back quotes.
 single_quotes(U): U is the parsing of single quotes.
 annotation(A): A is the annotation mode.
 source(S): S is the source the term belongs to.
 part(P): P is the part that should be written.

Legal context type values are ‘?’ or an integer. The default context type value is ‘?’.
Legal format values are ‘false’, ‘newline’, ‘navigation’ and ‘true’. The default format
value is ‘false’. Legal values for the operator priority are integer values in the range 0
to 1200. The default operator priority is 1200.

Legal annotation values are ‘false’, ‘makedot’, ‘filler’ and ‘true’. The default annotation
value is ‘false’. Legal single quotes, double quotes and back quotes values are ‘error’,
‘chars’ [ISO], ‘codes’ [ISO], ‘variable', 'atom' [ISO] and ‘string’. The default quote val-
ues are taken from the corresponding Prolog flags. Legal part values are ‘false’,
‘comment’, ‘statement’ and ‘true’. The default part value is ‘true’.

read(E): [ISO 8.14.1]
read(T, E): [ISO 8.14.1]
 The unary predicate reads a sentence from the standard input and parses it into a

Prolog term. The sentence consists of the tokens up to the first terminating period
(“.”). When the sentence only contains filler without a terminating period (“.”) then the
predicate succeeds when E unifies with the end_of_file atom. Otherwise the predicate
succeeds when E unifies with the parsed term. The binary predicate takes an addi-
tional text stream source as argument.

read_term(E, O): [ISO 8.14.1]
read_term(T, E, O): [ISO 8.14.1]
 The predicate reads the term E from the standard input taking into account the read

options O. The ternary predicate takes an additional text stream source as argument.
The following read options are available:

variables(L): [ISO] L are the variables.

 variable_names(N): [ISO] N are the variable names.
 singletons(S): [ISO] S are the singleton names.
 priority(P): P is the read priority.
 terminator(T): T is the terminator.

double_quotes(U): U is the parsing of double quotes.
 back_quotes(U): U is the parsing of back quotes.
 single_quotes(U): U is the parsing of single quotes.
 annotation(A): A is the annotation mode.
 source(S): S is the source the term belongs to.
 line_no(N): N is line number where the term starts.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 68 of 115

 Legal terminator values are 'period' [ISO], 'end_of_file' and 'none'. The default value is

'period'. Legal single quotes, double quotes and back quotes values are ‘error’, ‘chars’
[ISO], ‘codes’ [ISO], ‘variable’, 'atom' [ISO] and ‘string'. The default values are taken
from the corresponding Prolog flags. Legal annotation values are ‘false’, ‘makedot’,
‘filler’ and ‘true’. The default annotation is ‘false’.

The following Prolog flags for term input/output are provided:

char_conversion: [ISO 7.11.2.1]
 Legal values are ‘on’ [ISO] and ‘off’ [ISO]. The flag indicates whether unquoted tokens

are character converted. The default value is ‘off’. Currently the value cannot be
changed.

double_quotes: [ISO 7.11.2.5]
 Legal values are ‘error’, ‘chars’ [ISO], ‘codes’ [ISO], ‘variable’, 'atom' [ISO] and ‘string'.

The flag indicates how double quoted strings are parsed. The default value is ‘codes’.
back_quotes:
 Legal values are ‘error’, ‘chars’, ‘codes’, ‘variable’, 'atom' and ‘string'. The flag indi-

cates how back quoted strings are parsed. The default value is ‘error’.
single_quotes:
 Legal values are ‘error’, ‘chars’, ‘codes’, ‘variable’, 'atom' and ‘string'. The flag indi-

cates how back quoted strings are parsed. The default value is ‘atom’.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 69 of 115

Module stream [Preloaded]

Streams can have a couple of properties. The if-modified-since date property can be sup-
plied by the open options. It causes the open primitive to throw a not-modified exception
when the source has not been modified since the given date. The last-modified and expira-
tion date properties can be retrieved via the open options.

Text streams have further the character set encoding property. For remote sources with a
mime type this property defaults to the character set property of the mime type. Otherwise
the property defaults to UTF-8. Incoming CR LF sequences or CR characters are automati-
cally compressed respectively translated to LF characters.

If a text stream belongs to the file schema and is opened for read with the byte order mark
detection on, this detection will try to determine the default encoding. The detection can cur-
rently detect UTF-8, UTF-16LE and UTF-16BE. If a mark is detected the initial read position
is placed after the mark.

The following stream control predicates are provided:

current_input(S): [ISO 8.11.1]
 The predicate succeeds when S unifies with the standard input stream.
current_output(S): [ISO 8.11.2]
 The predicate succeeds when S unifies with the standard output stream.
current_error(S):
 The predicate succeeds when S unifies with the standard error stream.
set_input(S): [ISO 8.11.3]
 The predicate sets the standard input stream to the source S.
set_output(S): [ISO 8.11.4]
 The predicate sets the standard output stream to the sink S.
set_error(S):
 The predicate sets the standard error stream to the sink S.
open(P, M, S): [ISO 8.11.5.4]
open(P, M, S, O): [ISO 8.11.5.4]
 The ternary predicate succeeds when S unifies with the new stream associated with

the path or socket P and the access mode M (read, write or append). The quaternary
predicate additionally recognizes the following open options:

 type(T): [ISO] T is the type (text or binary), default value is text.
 alias(A): [ISO] A is the alias.
 bom(B): B is the byte order mark detection and generation flag.
 use_caches(B): B is the use caches flag for the connection.
 encoding(C): C is the character set encoding for the text stream.
 buffer(S): S is the buffer size, or 0 if no buffer is required.
 if_modified_since(D): D is the if-modified-since date for the connection.
 If_none_match(V): V is the if-none-match tag for the connection
 reposition(B): [ISO] B is the reposition (false or true), default value is false.
 newline(S): S is the newline character sequence to use in writing.

close(S): [ISO 8.11.6]
close(S, O): [ISO 8.11.6]
 The unary predicate closes the closeable S. The binary predicate additionally recog-

nizes the following close options.

 force(F): [ISO] F is the force flag, default is false.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 70 of 115

stream_property(S, P): [ISO 8.11.8]
 The predicate succeeds with all the properties of the stream S that unify with P. The

following stream properties are supported:

 mode(M): [ISO] M is the mode (read, write or append).
 type(T): [ISO] T is the type (text or binary).
 bom(B): B is the byte order mark.

encoding(C): C is the character set encoding of the text stream.
buffer(S): S is the buffer size, or 0 if no buffer is present.

 last_modified(D): D is the last-modified date of the stream.
 version_tag(V): V is the version tag of the stream.
 expiration(D): D is the expiration date of the stream.
 date(D): D is the request date of the stream.
 max_age(M): M is the max age cache control of the stream.

mime_type(M): M is the mime type of the stream.
 line_no(N): N is the line number of the text stream.
 reposition(B): [ISO] B is the reposition (false or true)
 position(P): [ISO] P is the actual file position.
 length(L): L is the actual file length.
 file_name(F): [ISO] F is the absolute path of the stream.
 input: [ISO] The stream is an input stream.
 output: [ISO] The stream is an output stream.

 An undefined encoding/1 property is returned as a zero length atom. An undefined

buffer property is returned as the value 0. The last_modified/, the expiration/1 and the
date/1 properties are given in milliseconds since January 1, 1970 GMT. An undefined
last_modified/1, expiration/1 or date/1 property is returned as the value 0.

The version tag is an atom that starts and ends with double quotes (“). An undefined
version tag is returned as a zero length atom. The line_no/1 of a source starts with 1.
The position/1 and length/1 properties are measured in bytes, starting with 0 and are
available when reposition(true) holds.

An undefined file_name/1 is returned as a zero length atom. The mime_type/1 prop-
erty is an atom of the form <type>/<subtype> or otherwise a zero length atom.

set_stream_position(S, P): [ISO 8.11.9]

The predicate sets the file position of the stream S to P.
set_stream_length(S, L):

The predicate sets the file length of the stream S to L.
open_resource(P, S):
open_resource(P, S, O):

The predicate succeeds when S unifies with the new resource stream associated with
the path P. The ternary predicate additionally recognizes the following open options.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 71 of 115

The following Prolog flags for stream control are provided:

sys_cur_input:
 The legal value is a text or binary input stream. It is the current input of the current

interpreter. Default value is the current input of the parent interpreter. The value can
be changed.

sys_cur_output:
 The legal value is a text or binary output stream. It is the current output of the current

interpreter. Default value is the current output of the parent interpreter. The value can
be changed.

sys_cur_error:
 The legal value is a text or binary output stream. It is the current error of the current

interpreter. Default value is the current error of the parent interpreter. The value can
be changed.

sys_tool_input:
 The legal value is a text or binary input stream. It is the current input of the current

toolkit. Default value is the current input of the process environment. The value can
be changed.

sys_tool_output:
 The legal value is a text or binary output stream. It is the current output of the current

toolkit. Default value is the current output of the process environment. The value can
be changed.

sys_tool_error:
 The legal value is a text or binary output stream. It is the current error of the current

toolkit. Default value is the current error of the process environment. The value can
be changed.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 72 of 115

Module console

This module supports access to the console. The first part consists of read utilities. Among
the read utilities there are currently the predicates read_line/[1,2] and read_line_max/[2,3].
The former does an unbounded read the later does a bounded read.

The second part consist Quintus Prolog inspired formatted output predicates. Among the
formatted output there are currently the predicates format/[2,3], print_message/[1,2],
print_error/[1,2] and print_stack_trace/[1,2]. The formatting is based on the Java Formatter
class.

Example:

?- format('res=%20d',[123123123]), nl.

res= 123123123

Yes

?- format('res=%25.4f',[123123123.123]), nl.

res= 123123123.1230

Yes

Since the line read predicates work with a text stream and does not fully consume a line, so
that it can cater for different line formats with CR LF, LF or CR termination, we introduced
further predicates read_punch/[1,2] and read_punch_max/[2,3].

The following console predicates are provided:

read_line(C):
read_line(T, C):

The predicate succeeds in C in reading a line. The predicate fails upon an empty line
and an end of file. The binary predicate allows specifying a text stream T.

read_line_max(L, C):
read_line_max(T, L, C):

The predicate succeeds in C in reading a line with maximally L characters. The predi-
cate fails upon an empty line and an end of file. The ternary predicate allows specify-
ing a text stream T.

read_punch(C):
read_punch(T, C):

The predicate succeeds in C in reading a punch. The predicate fails upon end of file.
The punch must end in CR LF, otherwise an exception is thrown. The binary predi-
cate allows specifying a binary stream T.

read_punch_max(L, C):
read_punch_max(T, L, C):

The predicate succeeds in C in reading a punch with maximally L bytes. The predi-
cate fails upon end of file. If less than L bytes different from CR are read, the punch
must end in CR LF otherwise an exception is thrown. The ternary predicate allows
specifying a binary stream T.

format(F, A):
format(T, F, A):

The predicate formats the list of arguments A according to the format F using the cur-
rent locale and writes it to the current output. The ternary predicate allows specifying
a text stream T.

print_message(M):
print_message(T, M):

The predicate formats the message term M according to the error properties of the
knowledge base and the current locale, and writes it to the current output. The binary
predicate allows specifying a text stream T.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 73 of 115

print_error(E):
print_error(T, E):

The predicate formats the error term E without its context according to the error
properties of the knowledge base and the current locale, and writes it to the current
error. The binary predicate allows specifying a text stream T.

print_stack_trace(E):
print_stack_trace(T, E):

The predicate formats the error term E with its context according to the error
properties of the knowledge base and the current locale, and writes it to the current
error. The binary predicate allows specifying a text stream T.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 74 of 115

Module xml

This module provides a couple of simple utilities to deal with the generation and parsing of
XML texts. The predicate text_escape/2 can be used to escape and un-escape texts. The
predicate text_escape/2 will escape the characters '"<>&' and the character 0xA0. It is suita-
ble for attribute values in double quotes and for texts.

Examples:

?- text_escape('<abc>', X).

X = '<abc>'

?- text_escape(X, '<abc>').

X = '<abc>'

The predicate base64_block/2 can be used to base64 encode and decode a byte block. This
code allows representing 8-bit bytes as ASCII characters. When generating base64 code the
predicate will produce 10 blocks of 4 characters effectively encoding 30 bytes. While decod-
ing the terminating characters = indicate the number of fill bytes.

The following xml predicates are provided:

text_escape(T, E):

If T is a variable then the predicate succeeds when T unifies with the text un-escape
of E. Otherwise the predicate succeeds when E unifies with the text escape of T.

html_escape(T):
html_escape(O, T):

The predicate sends the text T escaped to the current output. The binary predicate al-
lows specifying an output stream O.

hex_block(T, E):
If T is a variable then the predicate succeeds when T unifies with the hex encode of
E. Otherwise the predicate succeeds when E unifies with the hex decode of T.

base64_block(T, E):
If T is a variable then the predicate succeeds when T unifies with the based64 encode
of E. Otherwise the predicate succeeds when E unifies with the base64 decode of T.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 75 of 115

Compatibility Matrix

The following compatibility issues persist for the stream theory:

Table 10: Compatibility Matrix for the Stream Theory

Nr Description System

1 Has see/tell style stream handling DEC10

2 Has rename/delete predicate. DEC10

3 Has nofileerrors/fileerrors directive. DEC10

4 The predicate display bypasses the standard output. DEC10

5 Has predicate print which can be customized by portray. DEC10

6 Has standard aliases user_input and user_output. ISO

7 Close of current input/output will default them to standard. ISO

8 Does not have sys_print_exception/1. ISO

9 Does not have variable_names/1 option in write_term. ISO

10 Does not have back_quotes flag. ISO

11 The char_conversion flag is changeable. ISO

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 76 of 115

5.6 System Package
This package contains predicates that allow the access to various operating system ele-
ments. The following modules are provided:

 Module file: This module provides some basic file operations.

 Module uri: This module provides generation and parsing of URIs.

 Module group: The Prolog system supports multiple thread groups.

 Module thread: The Prolog system supports multiple concurrent interpreters.

 Module zone: This module provides access to different time zones.

 Module locale: This module provides the lookup and retrieval of properties.

 Module domain: This module provides access to domain names.

 Compatibility Matrix: t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 77 of 115

Module file

This module provides some basic file operations. The implementation is backed by some
Java code that delivers some primitives to access files. The Prolog text invokes
absolute_file_name/[2,3] before accessing these primitives. The result is that file name reso-
lution and encoding is applied for these primitives and that they accept URIs.

Example:

?- directory_file('file:/C:/Program+Files/Java/', X).

X = 'jdk1.6.0_45 / ' ;

X = 'jdk1.7.0_67 / ' ;

X = ' jdk1.8.0_20 / ' ;

Etc..

The predicate directory_file/2 will enumerate direct sub directories and directly contained
files. The predicate archive_file/3 will enumerate direct sub directories obtained from group-
ing file name segments and directly contained files. Both predicates will indicate a found sub
directory by appending a slash (/).

Currently only URIs of protocol “file:” are supported. But future implementations might sup-
port further protocols such as “jar:” or service based protocols such as Google Drive, Drop-
Box or others. The realization might depend on the platform, so that the Swing variant and
Android might support different protocols in the future.

The following file predicates are provided:

make_name(B, E, N):

If B or E is a variable then the predicate succeeds when B and E unify with the base
name and the extension respectively of the file name N. Otherwise the predicates
succeeds when N unifies with the constructed name.

make_path(D, N, P):
If D or N is a variable then the predicate succeeds when D and N unify with the direc-
tory and the name respectively of the path P. Otherwise the predicates succeeds
when P unifies with the constructed path.

create_file(F):
Succeeds when the file F could be created.

delete_file(F):
Succeeds when the file or directory F could be deleted.

rename_file(F, G):
Succeeds when the file or directory F could be renamed to the file or directory G.

exists_file(F):
Succeeds when the file F exists and when it isn't a directory.

exists_directory(F):
Succeeds when the file F exists and when it is a directory.

make_directory(F):
The predicate succeeds when the directory F could be created.

directory_file(F, N):
Succeeds whenever N unifies with an entry if the directory F.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 78 of 115

get_time_file(F, T):
Succeeds when T unifies with the last modified date of the file or directory F. T is
measured in milliseconds since the epoch.

set_time_file(F, T):
Succeeds when the last modified date of the file or directory F could be set to T. T is
measured in milliseconds since the epoch but might be rounded by the system.

is_relative_path(P):
 The predicate succeeds when the path P is a relative path.
follow_path(B, R, A):

If R is a variable then the predicate succeeds when R unifies with the relative or abso-
lute path that leads from B to A. Otherwise the predicate succeeds when A unifies
with the path that results from B by following R.

canonical_path(P, C):
 The predicate succeeds when C unifies with the canonical path of P.
getenv(N, V):

The predicate succeeds for the value V of the environment variable named N.
archive_file(F, P, N):

Succeeds whenever N unifies with an entry for the prefix P in the archive F.
exists_entry(F, N):

Succeeds when the entry N exists in the archive F.
make_pack(N, V, P):

If N or V is a variable then the predicate succeeds when N and V unify with the name
and version of the package name P. Otherwise the predicate succeeds when P uni-
fies with the constructed package name.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 79 of 115

Module uri

This module provides a couple of simple utilities to deal with the generation and parsing of
uniform resource identifiers (URIs). The predicates make_query/4, make_spec/4 and
make_uri/4 allow constructing and deconstructing queries, specs and URIs. The predicates
work bidirectional without loss of data.

Example:

?- make_query(X, Y, Z, 'a%3Db=c%26d&e').

X = 'a=b',

Y = 'c&d',

Z = e

The predicates make_query/4, make_spec/4 and make_uri/4 do a minimal encoding. For the
parameter name and the parameter value the characters '#%=&\' will be encoded. For the
hash the characters '%\' will be encoded. For the spec the characters '?#%\' will be encoded.
If used in the other direction the predicates will perform decoding of the corresponding com-
ponents.

An URI is relative when it neither contains a scheme nor an authority, and if the path is rela-
tive. The predicate is_relative_uri/1 checks whether an URI is relative. The predicate
follow_uri/3 can be used to resolve and relativize URIs. Contrary to the Java URL class, it is
agnostic to the scheme of the URIs and will allow any scheme. In these predicates the path
component is handled by the corresponding routines from system/file.

Example:

?- follow_uri('file:/foo/bar/baz?jack#jill',

 X, 'file:/foo/tip/tap?fix#fox').

X = '../tip/tap?fix#fox'

The predicate canonical_uri/2 can be used to canonize URIs. For the file protocol the path
component is handled by the corresponding routine from the module file. For other protocols
the routine uses puny code from the module domain and accesses the server for redirects.

The predicate uri_encode/2 can be used to encode and decode URIs. The predicate
uri_encode/2 will percent encode characters above 0x7F. As a result the URI will only con-
tain ASCII. If used in the other direction the predicate will first decode and then minimal en-
code again.

The following URI predicates are provided:

make_query(N, V, R, Q):

If N, V or R is a variable then the predicate succeeds when N, V and R unify with the
first parameter name, the first parameter value and the rest query of the query Q.
Otherwise the predicates succeeds when Q unifies with the constructed query.

make_spec(E, A, P, S):
If E, A or P is a variable then the predicate succeeds when E, A and P unify with the
scheme, authority and path respectively of the spec S. Otherwise the predicate suc-
ceeds when S unifies with the constructed spec.

make_uri(S, Q, H, U):
If S, Q or H is a variable then the predicate succeeds when S, Q and H unify with the
spec, query and hash respectively of the URI U. Otherwise the predicate succeeds
when U unifies with the constructed URI.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 80 of 115

is_relative_uri(U):
The predicate succeeds when the URI U is a relative URI.

follow_uri(B, R, A):
If R is a variable then the predicate succeeds when R unifies with the relative or abso-
lute URI that leads from B to A. Otherwise the predicate succeeds when A unifies with
the URI that results from B by following R.

canonical_uri(U, C):
The predicate succeeds when C unifies with canonical URI of U.

uri_encode(T, E):
If T is a variable then the predicate succeeds when T unifies with the URI decode of
E. Otherwise the predicate succeeds when E unifies with the URI encode of T.

make_link(S, P, H, L):
If L is a variable, then the predicate succeeds in L with the URI composed of the spec
S, the parameters P and the hash H. Otherwise the predicate succeeds in decompos-
ing the URI.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 81 of 115

Module group

A Prolog thread group is simply a Java thread group. A Prolog thread group might contain
Prolog threads and otherwise threads. The predicate group_new/1 creates a new thread
group. The predicate group_thread/2 allows retrieving the oldest member. The predicate
current_group_flag /3 allows inspecting thread group properties.

Example:

?- threads.

Thread State Group

Thread - 2 WAITING main

Thread - 3 RUNNABLE Group - 1

Thread - 4 WAITING Group - 1

Yes

The predicate current_thread/1 succeeds for the Prolog threads currently known to the base
knowledge base. The predicate threads/0 lists the same threads on the standard output. The
Prolog threads are shown with their state and their group. Currently the predicates also list
threads across different sub knowledge bases.

The following group predicates are provided:

group_new(G):

The predicate succeeds for a new thread group G.
thread_new(G, C, T):

The predicate succeeds for a new thread T on the copy of the goal C inside the
thread group G.

group_thread(G, T):
The predicate succeeds in T with the oldest thread of the thread group G if there is
any. Otherwise the predicate fails.

current_thread(G, T):
The predicate succeeds in T with the threads of the thread group G.

current_group(G, H):
The predicate succeeds in H with the groups of the thread group G.

current_group_flag(G, K, V):
The predicate succeeds for the values V of the keys K concerning the group G. The
following keys are returned by the predicate.

 sys_group_name: The name of the group.
 sys_group_group: The group of the group.
 sys_group_store: The store of the group.

current_thread(T):

The predicate succeeds in T with the managed threads.
threads:

The predicate lists the managed threads.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 82 of 115

Module thread

A Prolog thread is simply a Java thread that executes a Prolog call-in. The call-in can be cre-
ated by the predicate thread_new/2 and the goal will be copied. The thread can then be
started by the predicate thread_start/1. A thread need not be explicitly destroyed, it will au-
tomatically be reclaimed by the Java GC when not anymore used.

Examples:

?- thread_new((between(0,10,X),write(X),write(' '),fail;

 nl), I), thread_start(I).

I = 0r5ab10801

0 1 2 3 4 5 6 7 8 9 10

A new thread will share the knowledgebase and the display input/output of the creating
thread. On the other hand a new thread will have its own thread local predicates. A thread
can be aborted by the predicate thread_abort/2 and thread_down/[2,3]. A thread can be
killed by the predicate thread_kill/1. The later predicate should only be used in emergency
situation, since the receiving Prolog call-in will not be able to properly clean-up.

The predicates thread_join/1 and thread_combine/[1,2] allow waiting for the termination of a
thread. The predicates will block, fail or timeout when the thread is alive. Every thread can be
joined and joining does not retrieve an exit code and/or an exit Prolog term. The predicate
current_thread_flag/3 allows inspecting thread properties.

The following thread predicates are provided:

thread_sleep(M):
 The predicate suspends the current thread for M milliseconds.
thread_current(T):

The predicate succeeds for the current thread T.
thread_new(C, T):

The predicate succeeds for a new thread T on the copy of the goal C.
thread_start(T):

The predicate succeeds for starting the thread T.
thread_abort(T, M):

The predicate succeeds for signalling the error message M to the thread T.
thread_down(T, M):

The predicate succeeds for signalling the error message M to the thread T. Otherwise
the predicate fails.

thread_down(T, M, W):
The predicate succeeds for signalling the error message M to the thread T in the
timeout W. Otherwise the predicate fails.

thread_kill(T):
The predicate succeeds for killing the thread T.

thread_join(T):
The predicate succeeds when the thread T has terminated.

thread_combine(T):
The predicate succeeds when the thread T has terminated. Otherwise the predicate
fails.

thread_combine(T, W):
The predicate succeeds when the thread T has terminated in the timeout W.
Otherwise the predicate fails.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 83 of 115

current_thread_flag(T, F, V):
The predicate succeeds for the value V of the flag F for the thread T.

set_thread_flag(T, F, V):
 The predicate sets the flag F to the value V for the thread T.

The following thread thread flags are provided:

sys_thread_name:

The name of the thread. The flag cannot be changed.
sys_thread_status:

The status of the thread. The flag cannot be changed.
sys_thread_group:

The group of the thread. The flag cannot be changed.

The following thread Prolog flags are provided:

sys_cpu_count:

The flag returns the number of logical cores of the current process. The flag cannot
be changed.

sys_runtime_version:
The flag returns the version of the Java language runtime of the current process. The
flag cannot be changed.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 84 of 115

Module zone

The module provides access to different time zones. The Java class date is used to repre-
sent time in the default time zone. On the other hand, the Java class calendar is able to rep-
resent in a different time zone. Both representations use time in milliseconds since January
1, 1970, 00:00:00 GMT under the hood.

Examples:

?- get_time(D), format('%tc \ n', [D]).

Mon Aug 22 17:07:24 CEST 2016

?- statistics(wall, T), get_time(T, D), format('%tc \ n', [D]).

Mon Aug 22 17:07:39 CEST 2016

The predicates get_time/[1,2] allow creating a Java date instance from the current time re-
spectively from a given time in milliseconds. The predicates get_time/[3,4] on the other hand
will create a Java calendar instance from a given time in milliseconds. The values can be
used with the format predicates from the modules "console" and "locale".

Examples:

?- get_time('ja_JP_JP', 1549556043201, 'JST', D),

 date_atom('en_GB','GGGG y - MM- dd zzz', D, R).

R = 'Heisei 31 - 02- 08 JST'

?- get_time('ja_JP_JP', - 1357544756799, 'JST', D),

 date_atom('ja_JP_JP','GGGG y - MM- dd zzz', D, R)

R = ' 1- 12- 26 JST'

The predicates data_atom/[3,4] supplement the format predicates in that they also allow
parsing of dates and not only the un-parsing of dates and calendars. The locale of the predi-
cate determines the vocabulary but not the calendar. The predicate rfc1123_atom/2 parses
and un-parses RFC1123 formatted time.

The following zone predicates are provided:

get_time(D):

The predicate succeeds with a date object D for the current time.
get_time(T, D):

The predicate succeeds with a date object D for the time T in milliseconds since Jan-
uary 1, 1970, 00:00:00 GMT and vice versa.

get_time(T, Z, C):
get_time(L, T, Z, C):

The predicate succeeds with a calendar object C for the time T in milliseconds since
January 1, 1970, 00:00:00 GMT, in the desired time zone Z. The quaternary predicate
allows specifying a locale L.

date_atom(F, T, S):
date_atom(L, F, T, S):

The predicate succeeds in S with the date or calendar T formatted to the format F and
vice versa. The quaternary predicate allows specifying a locale L.

rfc1123_atom(T, A):
The predicate succeeds in A with the RFC1123 formatted time T in milliseconds since
January 1, 1970, 00:00:00 GMT and vice versa.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 85 of 115

Module locale

A properties bundle consists of multiple properties files that vary in the file name by an injec-
tion of a locale code before the file extension. Our convention is that each bundle must con-
tain a properties file without injection. This file acts as a root for the bundle and as a fall-back
for locales that are not found:

Examples:

code.properties: The root and fall - back.

code_de.properties: The German member of the bundle.

The predicates sys_get_lang/2 and sys_get_lang/3 allow retrieving a locale properties file of
a resource bundle. These predicates make use of the predicate absolute_resource_name/2
to resolve the root so that the same base name without an extension can be used for both
Prolog text and resource bundles. The resource bundle itself has to be loaded in advanced
via the predicate sys_load_resoruce/1.

Examples:

: - sys_load_resource('code').

test(Y) : - sys_ get_lang('code',X), get_property(X,'foo',Y).

?- test(X).

X = bar

The retrieval of a locale properties file is relatively fast, since we cache locale properties files
on a per resource bundle basis. But it still not yet as fast and flexible as predicate invocation,
since we have not yet implemented a call-site cache and an auto loader for resource bun-
dles. The predicates get_property/3 and get_property/4 allow retrieving a property value from
a locale properties file.

The predicate atom_format/[3,4] allows formatting a list of arguments based on a template
and a locale. The predicates message_make/[3,4] and error_make/[3,4] allow formatting a
term based on properties file and a locale. The predicates get_error_properties/[1,2] and
get_description_properties/[2,3] allow retrieving knowledgebase respective capability defined
properties files.

The following locale predicates are provided:

sys_get_lang(S, P):
sys_get_lang(S, L, P):

The predicate unifies P with the properties from the bundle S for the current default
locale. The ternary version of the predicate allows specifying the locale L. The re-
source bundle S has to be loaded in advance via sys_load_resource/1.

get_property(P, K, V):
get_property(P, K, D, V):

The predicate unifies V with the value for the key K from the properties P. The qua-
ternary version of the predicate allows specifying a default value D.

atom_format(F, A, S):
atom_format(L, F, A, S):

The predicate formats the arguments A from the format F and unifies the result with
S. The quaternary predicate allows specifying a locale L.

message_make(P, M, S):
message_make(L, P, M, S):

The predicate formats the message term M from the properties P and unifies the re-
sult with S. The quaternary predicate allows specifying a locale L.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 86 of 115

error_make(P, E, S):
error_make(L, P, E, S):

The predicate formats the error term E without its context from the properties P and
unifies the result with S. The quaternary predicate allows specifying a locale L.

get_error_properties(P):
get_error_properties(L, P):

The predicate unifies P with the error properties of the knowledge base. The binary
predicate allows specifying a locale L. The error resource bundles have to be loaded
in advance via sys_load_resource/1.

get_description_properties(C, P):
get_description_properties(L, C, P):

The predicate unifies P with the description properties of the given capability C. The
ternary predicate allows specifying a locale L.

The following locale Prolog flags are provided:

sys_locale:

Legal values are atoms as return by the Java method Locale.toString(). The flag indi-
cates the current default locale. The value can be changed by the end-user.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 87 of 115

Module domain

This module provides a couple of simple utilities to deal with the access to internationalized
domain names (IDNs). The predicate make_domain/3 allows constructing and deconstruct-
ing user and host. The predicate works bidirectional without loss of data.

Example:

?- make_domain('foo','λ.com',X).

X = 'foo@λ.com'

The predicate host_lookup/2 can be used to perform a forward or reverse lookup of a host
name. The predicate will fail if the host name is not known. The predicate ping_host/1 can be
used to check the reachability of a host name. The Java internet libraries do not automatical-
ly a name preparation. Neither do our Prolog predicates presented so far.

Example:

?- uri _puny('http://zürich.ch/robots.txt', X).

X = 'http://xn -- zrich - kva.ch/robots.txt'

Name preparation is for example required for host names. Domain name servers only work
with ASCII represented host names and the recommended encoding of Unicode towards
ASCII for host names is puny code. Such an encoding can be invoked by the predicate
uri_puny/2 provided in this module.

The following domain predicates are provided:

make_domain(U, H, D):

If U and H are variables, then the predicate succeeds when U and H unify with the
user and the host of the domain D. Otherwise the predicates succeeds when D uni-
fies with the constructed domain.

host_lookup(U, C):
If U is a variable then the predicate succeeds when U unifies with reverse lookup of
C. Otherwise the predicate succeeds when C unifies with the forward lookup of U.

ping_host(H):
The predicate succeeds when the host H is reachable.

uri_puny(S, P):
If S is a variable then the predicate succeeds when S unifies with the puny decode of
P. Otherwise the predicate succeeds when P unifies with the puny encode of S.

sha1_hash(B, H):
The predicate succeeds in H with the SHA-1 hash block of the block B.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 88 of 115

Compatibility Matrix

t.b.d.

Table 11: Compatibility Matrix for the Token Syntax

Nr Description System

1 t.b.d.

2 t.b.d.

3 t.b.d.

4 t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 89 of 115

5.7 Miscellaneous Package
This package contains miscellaneous predicates. The following modules are provided:

 Module text: This module provides character classifications.

 Module residue: This module allows custom displayable constraints.

 Module lock: This module provides synchronization primitives.

 Module pipe: This module provides communication primitives.

 Module time: This module provides timing primitives.

 Module socket: This module provides server and client sockets.

 Module http: This module provides a simple HTTP server.

 Compatibility Matrix: t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 90 of 115

Module text

The predicates code_class/2 and char_class/2 can be used to classify a character. The
character classifier is configurable and plug-able. To use a custom character classifier the
predicates code_class/3 and char_class/3 can be used. The predicates code_digit/3 and
char_digit/3 can be used to classify and decode digits in a given base.

Examples:

?- char_ class (a, X).

X = lower

?- char_ class ('A', X).

X = upper

The default character classifier uses the Prolog ISO core standard classification for the ASCII
range plus the Jekejeke Prolog specific extension for Unicode. The predicates code_lower/2
and code_upper/2 can be used for case conversion of code points. The predicates
downcase_atom/2 and upcase_atom/2 can be used for case conversion of atoms.

Examples:

?- pattern_ match('foobarfoo','bar').

No

?- pattern_ match('foobarfoo','*bar*').

Yes

We also provide predicates for pattern matching. The predicate pattern_match/2 takes an
atom and matches it against a pattern. The predicate pattern_replace/4 takes a further pat-
tern and produces a new atom. The pattern language provided by us is inspired by the for-
mer NEBIS library system.

The following text predicates are provided:

char_class(C, N):
char_class(H, C, N):

The predicate succeeds for the name N of the Prolog classification of the character C.
The ternary predicate allows specifying a custom classifier H. The following classifica-
tion names are currently supported:

blank: The character is a blank space.
cntrl: The character is a control character.
inval: The character is invalid.
solo: The character is a solo character.
score: The character is an underscore.
upper: The character is an upper case letter.
lower: The character is a lower case letter.
other: The character is some other alpha numerical character.
digit: The character is a decimal digit.
symbol: The character is a symbol character.

code_class(C, N):
code_class(H, C, N):

The predicate succeeds for the name N of the Prolog classification of the code point
C. The ternary predicate allows specifying a custom classifier H.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 91 of 115

char_digit(C, R, V):
The predicate succeeds in V with the numerical value of the digit C in the radix R.

code_digit(C, R, V):
The predicate succeeds in V with the numerical value of the digit C in the radix R.

code_lower(C, D):
The predicate succeeds in D for the lower case of C.

code_upper(C, D):
The predicate succeeds in D for the upper case of C.

downcase_atom(A, B): [Prolog Commons Atom Utilities]
The predicate succeeds in B for the lower case of A.

upcase_atom(A, B): [Prolog Commons Atom Utilities]
The predicate succeeds in B for the upper case of A.

pattern_match(S, P):
pattern_match(S, P, O):

The predicate succeeds when the atom S matches the shell pattern P. The ternary
predicate allows specifying match options O. The following match options are current-
ly supported:

boundary(B): B is the pattern boundary condition.
ignore_case(I): I is the ignore case flag.
style(S): S is the style.

The legal values for the pattern boundary condition are whole, part and word. The de-
fault value is whole. The legal values for the ignore case flag are true and false. The
default value is false. The legal values for the style are create and parse. The default
value is create.

pattern_replace(S, P, R, T):
pattern_replace(S, P, R, T, O):

The predicate succeeds when the atom S matches the shell pattern P, and when re-
placing the matched pattern by R yields the atom T. The quinary predicate allows
specifying match and replaces options O.

last_pattern_replace(S, P, R, T):
last_pattern_replace(S, P, R, T, O):

These predicates work similar to the predicates replace/4 and replace/5 except that
they search backwards.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 92 of 115

Module residue

By default the top-level shows the current unification equations. An extension can show arbi-
trary constraints. It can do so by defining further clauses for the multi-file predicates
sys_current_eq/2 and sys_unwrap_eq/3.

The constraints that are related directly or indirectly to a term can be retrieved by the predi-
cate sys_term_eq_list/2. As a further convenience the predicate call_residue/2 allows calling
a goal and retrieving the related constraints for each success.

Terms that are directly instantiated to a variable can be customized by the multi-file predicate
sys_printable_value/2 and queried by the predicate printable/2. The former predicate should
fail if there is no custom form and the later predicate will then return the original.

The following residue predicates are provided:

sys_current_eq(V, H):

The predicate succeeds for each equation H with variables wrapped that listens on
the variable V. Constraint solvers should extend this multi-file predicate.

sys_unwrap_eq(H, I, O):
The predicate converts equation H with variables wrapped into equations I with
variables unwrapped. The list uses the end O. Constraint solvers should extend this
multi-file predicate..

sys_term_eq_list(T, L):
The predicate unifies L with the list of constraints that depend directly or indirectly on
the variables of G.

call_residue(G, L):
The predicate succeeds whenever the goal G succeeds. The predicate unifies L with
the list of constraints that depend directly or indirectly on the variables of G.

printable(F, G):
The predicate succeeds in G with a custom form of F.

sys_printable_value(F, G):
The predicate succeeds in G with a custom form of F. The predicate should be
extended for custom forms.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 93 of 115

Module lock

A mutex is a binary semaphore. A mutex can be created by the predicates mutex_new/1 and
unslotted_new/2. A mutex need not be explicitly destroyed, it will automatically be reclaimed
by the Java GC when not anymore used. To balance acquires and releases of the same
semaphore the use of setup_call_cleanup/3 is recommended. Threads waiting for a sema-
phore can be interrupted.

Example:

?- mutex_new(M), lock_acquire(M), lock_release(M) .

M = 0r3f10bc2a

The predicates lock_acquire/1 and lock_attempt/[1,2] allow incrementing a semaphore by
one. These predicates will block, fail or timeout when the semaphore has already reached its
maximum by other threads. The predicate lock_release/1 allows decrementing the sema-
phore by one, provided it is not already zero. The slotted versions check that the owner
doesn’t change, but currently do not allow re-entrancy.

A read write pair can be created by the predicates lock_new/1 and nonescalable_new/1. In
the non-escalable version the non-binary read semaphore can be retrieved by the predicate
get_read/2 and it can be incremented provided the write semaphore is zero. The binary write
semaphore can be retrieved by the predicate get_write/2 and it can be incremented provided
the read semaphore is zero.

For the escalated version of the read write pair it is also allowed that the same thread holds a
read and a write lock from a read write pair. This can for example be used to upgrade or
downgrade a read write pair by using unbalanced locking. For example if a thread already
holds a write lock, it can acquire the read lock and then release the write lock. The result is
that the write lock was changed into a read lock.

The following lock predicates are provided:

mutex_new(M):

The predicate succeeds for a new slotted mutex M.
unslotted_new(M):

The predicate succeeds for a new unslotted mutex M.
lock_aquire(L):

The predicate succeeds after locking the lock L.
lock_attempt(L):

The predicate succeeds after locking the lock L. Otherwise the predicate fails.
lock_attempt(L, T):

The predicate succeeds after locking the lock L in the timeout T. Otherwise the
predicate fails.

lock_release(L):
The predicate succeeds after unlocking the lock L.

lock_new(P):
The predicate succeeds for a new slotted and escalable read write pair P.

nonescalable_new(P):
The predicate succeeds for a new unslotted and non-escalable read write pair P.

get_read(P, R):
The predicate succeeds for the read lock R of the read write pair P.

get_write(P, W):
The predicate succeeds for the write lock W of the read write pair P.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 94 of 115

Module pipe

Pipes allow exchanging messages. Messages are Prolog terms and are copied. An un-
bounded queue can be created by the predicate pipe_new/1. A bounded queue can be cre-
ated by the predicate pipe_new/2. Pipes need not be explicitly destroyed, they will automati-
cally be reclaimed by the Java GC when not anymore used. Threads waiting for a pipe can
be interrupted.

Example:

?- queue_ new(1, Q), pipe_put (Q, p(X)), pipe_take (Q, R).

Q = 0ra2a372,

R = p(_A)

The predicates pipe_put/2 and pipe_offer/[2,3] allow sending a message to a bounded
queue. The predicates will block, fail or timeout when the bounded queue is full. The predi-
cate pipe_put/2 can also be used for unbounded queues and will never block. The predicates
pipe_take/3 and pipe_poll/[2,3] allow getting a message from a pipe. The predicates will
block, fail or timeout when the pipe is empty.

The following pipe predicates are provided:

pipe_new(Q):

The predicate succeeds for a new unbounded queue Q.
pipe_new(M, Q):

The predicate succeeds for a new bounded queue Q with maximum size M.
pipe_put(P, O):

The predicate succeeds for sending a copy of the term O to the pipe P.
pipe_offer(P, O):

The predicate succeeds for sending a copy of the term O to the bounded queue P.
Otherwise the predicate fails.

pipe_offer(P, O, T):
The predicate succeeds for sending a copy of the term O to the bounded queue P in
the timeout T. Otherwise the predicate fails.

pipe_take(P, O):
The predicate succeeds for getting a term O form the pipe P.

pipe_poll(P, O):
The predicate succeeds for getting a term O form the pipe P. Otherwise the predicate
fails.

pipe_poll(P, T, O):
The predicate succeeds for getting a term O form the pipe P in the timeout T.
Otherwise the predicate fails.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 95 of 115

Module time

Alarm queues allow scheduling items. Items are Prolog terms and are copied. An alarm
queue can be created by the predicate alarm_new/1. An alarm queue need not be explicitly
destroyed, it will automatically be reclaimed by the Java GC when not anymore used.
Threads waiting for an alarm queue can be interrupted.

Example:

?- time_out((repeat, write('Hello World!'), nl,

 thread_sleep(1000), fail), 3000).

Hello World!

Hello World!

Hello World!

Error: Execution aborted since time limit exceeded.

 thread_sleep/1

 time_out/2

An item can be scheduled with the predicate alarm_schedue/4 giving a delay in milliseconds.
The predicate alarm_next/2 allows getting an item from a queue. The predicate will block for
the earliest item. The predicate alarm_cancel/2 will remove an item from the queue.

The predicate time_out/2 uses a predefined alarm queue which is served by a predefined
thread. The predicate executes the given goal once in the given timeout. When the timeout is
reached before the goal completes an exception is thrown.

The following time predicates are provided:

alarm_new(A):

The predicate succeeds for a new alarm queue A.
alarm_schedule(A, O, T, E):

The predicate succeeds for a new alarm entry E that schedules a copy of the term O
on the alarm queue A with a delay of T.

alarm_next(A, O):
The predicate succeeds for the next term O on the alarm queue A. The predicate
blocks for the earliest item.

alarm_cancel(A, E):
The predicate succeeds for cancelling the alarm entry E from the alarm queue A.

time_out(G, T):
The predicate succeeds when G succeeds in the timeout T. The predicate fails when
G fails in the timeout T. Otherwise the predicate throws the message
system_error(timelimit_exceeded).

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 96 of 115

Module socket

This module provides TCP/IP sockets. A socket provides a duplex binary stream. The read
and write stream can be obtained by the ordinary ISO core standard open/[3,4] predicates.
The open options also apply to sockets so that a binary stream can be easily viewed as a
text stream in various encodings.

Example:

?- client_new('pot.ty', C), open(C, write, S),

 write_term(S, 'Hello World!'), nl(S), close(C).

A server socket can be created with the predicates server_new/2. The predicate
server_accept/2 delivers a session socket. A client socket can be created with the predicates
client_new/3. Server, session and client sockets can be closed with the ISO core standard
close/[1,2] predicates.

The predicate websock_new/2 allows promoting a socket to a web socket. The input and
output streams will consume and generate web socket frames, but can be used as ordinary
ISO core standard streams. During writing a final frame is generated when the predicate
flush_output/[1,2] is used.

The following socket predicates are provided:

server_new(P, S):

The predicate succeeds in S with a new server socket for port P.
server_port(S, P):

The predicate succeeds in P with the port of the server socket S.
server_accept(S, H):

The predicate succeeds in H with a new session socket from server socket S.
client_new(H, P, C):

The predicate succeeds in C with a new client socket for host H and port P.
websock_new(S, W):

The predicate succeeds in a web socket W for the socket S.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 97 of 115

Module http

This module provides a HTTP server based on Pythonesk dispatch of a server object. The
class of the server object need only implement a predicate dispatch/4 with the Pythonesk
convention that the receiver appears in the first argument. The server can be started by
providing the server object that will be responsible for handling HTTP requests:

?- run_http (<object>, <port>), fail; true.

The server currently implements a minimal subset of the HTTP/1.1 protocol restricted to GET
method. The server will read the request line and the header lines. The server is able to gen-
erate error messages through the predicate dispatch_error/2. The server will generate a 404
error when dispatch/4 failed. The following HTTP/1.1 errors have been realized:

 400 Bad Request: Request could not be parsed.

 404 Not Found: Server object did not succeeds.

 415 Unsupported Media Type: Server object could not decode parameters.

 422 Unprocessable Entity: Server object could not validate parameters.

 501 Not Implemented: Request method not supported.

The predicate http_parameter/3 can be used by the server object to access URI query pa-
rameters. The predicates response_text/3, response_binary/3 and html_escape/2 can be
used to generate dynamic content by the server object. The predicates dispatch_text/3 and
dispatch_binary/3 can be used by the server object to deliver static content.

 101 Switching Protocols: Server object can start web socket worker.

 200 Ok: Server object delivers content and optionally meta-data.

 302 Found: Server object redirects to new location.

 304 Not Modified: Server object notifies that meta-data did not change.

The web server also supports the above HTTP/1.1 codes, which might have additional re-
sponse headers. The predicate dispatch_upgrade/2 will automatically generate a web socket
accept key and can be used to implement upgrade/4. The predicate dispatch_redirect/2 re-
quires a location, whereas the predicate dispatch_head/3 requires meta-data.

The following HTTP server predicates are provided:

run_http(O, P):

The predicate runs a web server with object O at port P.
http_parameter(R, N, V):

The predicate succeeds in V with the value of the parameter named N from the re-
quest R.

http_header(R, N, V):
The predicate succeeds in V with the value of the header named N from the request
R.

dispatch_error(E, O):
The predicate sends the error code E to the socket O. The error codes from 4xx and
5xx are supported.

response_text(C, H, O):
Send an OK response C with meta-data headers H to the text output stream O.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 98 of 115

dispatch_text(F, R, O):
The predicate sends the text resource F for request R to the socket O. Mime type de-
termined from resource. Meta data determined from resource and validated with re-
quest conditions.

response_binary(C, H, O):
Send an OK response C with meta-data headers H to the binary output stream O.
The OK responses from 2xx and 3xx are supported.

dispatch_binary(F, R, O):
The predicate sends the binary resource F for request R to the socket O. Mime type
determined from resource. Meta data determined from resource and validated with
request conditions.

dispatch_upgrade(R, O):
Send an upgrade response from request R to the socket O.

dispatch_redirect(L, O):
Send a redirect response to location L to the socket O.

validate_meta(R, H):
The predicate succeeds when the resource meta-data in the headers H satisfies the
conditions in the request R.

dispatch_head(C, H, O):
Send an OK response C with meta-data headers H to the socket O. The OK respons-
es from 2xx and 3xx are supported.

The following abstract HTTP server predicates are provided:

initialized(O, S):

The predicate is called when the server S is initialized for object O.
destroyed(O, S):

The predicate is called when the server S is destroyed for object O.
dispatch(O, P, R, S):

The predicate succeeds in dispatching the request for object O, with path P, with re-
quest R and the session S.

upgrade(O, P, R, S):
The predicate succeeds in upgrading the request for object O, with path P, with re-
quest R and the session S.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 99 of 115

Compatibility Matrix

t.b.d.

Table 12: Compatibility Matrix for the Token Syntax

Nr Description System

1 t.b.d.

2 t.b.d.

3 t.b.d.

4 t.b.d.

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 100 of 115

6 Appendix Example Listings
The below examples can be also browsed on GitHub:

http://github.com/jburse/jekejeke-samples/tree/master/jekrun/frequent

The full source code of the Prolog texts for the language examples is given. The following
source code has been included:

 Flag Example

 Palindrome Example [ISO]

 Fruits Example

 Hello Example

6.1 Flag Example
For the flag example there are the following sources:

 flag.p: The Prolog text for the loop without bindings.

 flag2.p: The Prolog text for the loop with bindings.

Prolog Text flag

/**

 * Prolog code for the closure without bindings example.

 *

 * Copyright 2012, XLOG Technologies GmbH, Switzerland

 * Jekejeke Prolog 1.0 (a fast and small prolog interpreter)

 */

% between(+Integer, +Integer, - Integer)

between(Lo, Hi ,_) : - Lo > Hi, !, fail.

between(Lo, _, Lo).

between(Lo, Hi, X) : - Lo2 is Lo+1, between(Lo2, Hi, X).

% for1(+Integer, +Integer, +Closure)

for1(Lo, Hi, Closure) : -

 between(Lo, Hi, Value),

 call(Closure, Value),

 fail.

for1(_,_,_).

% flag

flag : -

 for1(1,8,X \

 (for1(1,8,Y \

 (0 =:= (X+Y) mod 2 - > write(x); write(o))), nl)).

Prolog Text flag2

/**

 * Prolog code for the closure with bindings example.

 *

 * Copyright 2012, XLOG Technologies GmbH, Switzerland

 * Jekejeke Prolog 1.0 (a fast and small prolog interpreter)

 */

http://github.com/jburse/jekejeke-samples/tree/master/jekrun/frequent

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 101 of 115

% for2(+Integer, +Integer, +Closure)

for2(Lo, Hi, _) : - Lo > Hi, !.

for2(Lo, Hi, Closure) : -

 call(Closure, Lo),

 Lo2 is Lo+1,

 for2(Lo2, Hi, Closure).

% flag

flag(R) : -

 functor(R,'',8),

 for2(1,8,X \ S^

 (arg(X,R,S),

 functor(S,'',8),

 for 2(1,8,Y \ T^

 (arg(Y,S,T),

 (0 =:= (X+Y) mod 2 - > T=x; T=o))))).

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 102 of 115

6.2 Palindrome Example [ISO]
For the palindrome example there are the following sources:

 palin.p: The Prolog text of the grammar without attributes.

 palin2.p: The Prolog text of the grammar with attributes.

Prolog Text palin

/**

 * Prolog code for the p al indrome without attributes example.

 *

 * Copyr ight 2010, XLOG Technologies GmbH, Switzerland

 * Jekejeke Prolog 0.8.3 (a fast and small prolog interpreter)

 */

palin -- > [_].

palin -- > [Middle, Middle].

palin -- > [Border], palin, [Border].

Prolog Text palin2

/**

 * Prolog code for the p al indrome with attributes example.

 *

 * Copyright 2010, XLOG Technologies GmbH, Switzerland

 * Jekejeke Prolog 0.8.3 (a fast and small prolog interpreter)

 */

palin([], [Middle]) -- > [Middle].

palin([Middle], []) -- > [Middle , Middle].

palin([Border | List], Middle) -- > [Border], palin(List, Middle), [Border].

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 103 of 115

6.3 Fruits Example
For the fruits example there are the following sources:

 fruit.p: The Prolog text of the grammar without attributes.

 fruit2.p: The Prolog text of the grammar with attributes.

Prolog Text fruit

/**

 * Prolog code for the fruits without attributes example.

 *

 * Copyright 2011, XLOG Technologies GmbH, Switzerland

 * Jekejeke Prolog 0.9.2 (a fast and small prolog interpreter)

 */

repetition(G) -- > G, repetition(G).

repetition(_) -- > [].

fruit -- > "apple".

fruit -- > "orange".

fruit -- > "pear".

fruits -- > fruit, repetition((",", fruit)) .

Prolog Text fruit2

/**

 * Prolog code for the fruits with attributes example.

 *

 * Copyright 2011, XLOG Technologies GmbH, Switzerland

 * Jekejeke Prolog 0.9. 2 (a fast and small prolog interpreter)

 */

repetition(G,[X|Y]) -- > call(G,X), repetition(G,Y).

repetition(_,[]) -- > [].

fruit(apple) -- > "apple".

fruit(orange) -- > "orange".

fruit(pear) -- > "pear".

fruits([X|Y]) -- > fruit(X), repetition(Z \ (",", fruit(Z)),Y).

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 104 of 115

6.4 Hello Example
For the flag hello there are the following sources:

 hello.p: The Prolog text for the web server.

 piglet.gif: The static image for the web server.

Prolog Text hello

/**

 * Prolog code for the multimedia hello HTTP server.

 *

 * Copyright 2019, XLOG Technologies GmbH, Switzerland

 * Jekejeke Prolog 1.3.5 (a fast and small prolog interpreter)

 */

: - package(library(example04)).

: - module(hello, []).

: - reexport(library(misc/http)).

/**

 * dispatch(O, P, R, S):

 * The predicate succeeds in dispatching the request for object

 * O, with path P, with request R and the socket S.

 */

% dispatch(+Object, +Spec, +Request, +Socket)

: - override dispatch/4.

: - public dispatch/4.

dispatch(_, '/example04/piglet.gif', Request , Session) : - !,

 dispatch_binary(library(example04/piglet), Request, Session).

dispatch(_, '/example04/hello.jsp', Request, Session) : - !,

 dispatch_hello(Request, Session).

dispatch(Object, Spec, Request, Session) : -

 misc/http:dispatch(Object, Spe c, Request, Session).

% dispatch_hello(+Request, +Socket)

: - private dispatch_hello/2.

dispatch_hello(Request, Session) : -

 http_parameter(Request, name, Name), !,

 catch(handle_hello(Name, Session), _, true).

dispatch_hello(_, Session) : -

 dispatch _error(415, Session).

% handle_hello(+Atom, +Socket)

: - private handle_hello/2.

handle_hello(Name, Session) : -

 setup_call_cleanup(

 open(Session, write, Response),

 send_hello(Name, Response),

 close(Response)).

% send_hello(+Atom, +Socket)

: - private send_hello/2.

send_hello(Name, Response) : -

 response_text(200, ['Content - Type' -

 'text/html; charset=UTF - 8'], Response),

 atom_split(Title, ' ', ['Hello',Name]),

 html_begin(Response, Title),

 write(Respon se, ' <center> \ r \ n'),

 write(Response, '<h1>Happy New Year 2019, '),

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 105 of 115

 html_escape(Response, Name),

 write(Response, '</h1></center> \ r \ n'),

 html_end(Response).

% html_begin(+Stream, +Atom)

: - private html_begin/2.

html_begin (Response, Title) : -

 write(Response, '<!DOCTYPE html PUBLIC " - //W3C//DTD HTML 4.01

Transitional//EN"> \ r \ n'),

 write(Response, '<html> \ r \ n'),

 write(Response, ' <head> \ r \ n'),

 write(Response, ' <meta http - equiv="Content - Type"

content="text/ht ml; charset=UTF - 8"> \ r \ n'),

 write(Response, ' <meta name="viewport" content="width=device -

width, initial - scale=1.0"> \ r \ n'),

 write(Response, ' <title>'), html_escape(Response, Title),

write(Response, '</title> \ r \ n'),

 write(Response, ' </h ead> \ r \ n'),

 write(Response, ' <body> \ r \ n').

% html_end(+Stream)

: - private html_end/1.

html_end(Response) : -

 write(Response, ' </body> \ r \ n'),

 write(Response, '</html> \ r \ n').

Image piglet

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 106 of 115

Acknowledgements

Many thanks go to Jan Wielemaker who was open for discussions and also confirmed that
our thread clean already exists in the form of Jeff Roses trick.

Further thanks go to Robert Klemme, Andreas Leitgeb and Eric Sosman who shared my
general struggles with escalable read write locks.

Indexes

Public Predicates
Predicate Module
!/2 standard/dcg
*-> /4 standard/dcg
,/4 standard/dcg
--> /2 standard/dcg
-> /4 standard/dcg
. /4 standard/dcg
/\ /2 standard/expand
: /4 standard/apply
: /5 standard/apply
: /6 standard/apply
: /7 standard/apply
: /8 standard/apply
: /9 standard/apply
:: /4 standard/apply
:: /5 standard/apply
:: /6 standard/apply
:: /7 standard/apply
:: /8 standard/apply
:: /9 standard/apply
;/4 standard/dcg
[]/2 standard/dcg
(\)/3 experiment/abstract
(\)/4 experiment/abstract
(\)/5 experiment/abstract
(\)/6 experiment/abstract
(\)/7 experiment/abstract
(\)/8 experiment/abstract
(\)/9 experiment/abstract
(\+)/3 standard/dcg
^ /2 standard/expand
^ /4 experiment/abstract
^ /5 experiment/abstract
^ /6 experiment/abstract
^ /7 experiment/abstract
^ /8 experiment/abstract
^ /9 experiment/abstract
above/2 advanced/arith
acosh/2 basic/hyper
alarm_cancel/2 misc/time
alarm_new/1 misc/time

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 107 of 115

alarm_next/2 misc/time
alarm_schedule/4 misc/time
append/3 basic/lists
asinh/2 basic/hyper
assertable_ref/2 experiment/ref
assumable_ref/2 experiment/ref
at_end_of_stream/0 stream/byte
at_end_of_stream/1 stream/byte
atanh/2 basic/hyper
atom_format/3 system/locale
atom_format/4 system/locale
atom_lower/2 misc/text
atom_upper/2 misc/text
bagof/3 standard/bags
between/3 advanced/arith
call/2 standard/apply
call/3 standard/apply
call/4 standard/apply
call/5 standard/apply
call/6 standard/apply
call/7 standard/apply
call/8 standard/apply
call_cleanup/2 standard/signal
call_residue/2 misc/residue
canonical_path/2 system/file
canonical_uri/2 system/uri
char_type/2 misc/text
char_type/3 misc/text
clause_ref/3 experiment/ref
close/1 stream/stream
close/2 stream/stream
code_lower/2 misc/text
code_type/2 misc/text
code_type/3 misc/text
code_upper/2 misc/text
compiled_ref/2 experiment/ref
contains/2 advanced/sets
copy_term/2 standard/bags
cosh/2 basic/hyper
counter_new/1 basic/random
counter_next/2 basic/random
current_error/1 stream/stream
current_input/1 stream/stream
current_local/1 experiment/surrogate
current_output/1 stream/stream
delete_file/1 system/file
difference/3 advanced/sets
directory_file/2 system/file
erase_ref/1 experiment/ref
error_make/3 system/locale
error_make/4 system/locale
exists_directory/1 system/file
exists_file/1 system/file
expand_goal/2 standard/expand
expand_term/2 standard/expand
fail/2 standard/dcg

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 108 of 115

findall/3 standard/bags
flush_output/0 stream/byte
flush_output/1 stream/byte
follow_path/3 system/file
follow_uri/3 system/uri
foreign_dimension/2 basic/array
foreign_element/2 basic/array
foreign_length/2 basic/array
foreign_member/2 basic/array
foreign_update/2 basic/array
format/2 stream/console
format/3 stream/console
free_local/1 experiment/surrogate
get/3 experiment/maps
get_byte/1 stream/byte
get_byte/2 stream/byte
get_char/1 stream/char
get_char/2 stream/char
get_code/1 stream/char
get_code/2 stream/char
get_description_properties/2 system/locale
get_description_properties/3 system/locale
get_error_properties/1 system/locale
get_error_properties/2 system/locale
get_local/2 experiment/surrogate
get_property/3 system/locale
get_property/4 system/locale
get_read/2 misc/lock
get_time/1 system/shell
get_time/2 system/shell
get_time_file/2 system/file
get_write/2 misc/lock
getenv/2 system/shell
goal_expansion/2 standard/expand
goal_expansion/2 standard/dcg
hash_code/2 standard/sort
intersection/3 advanced/sets
is_relative_path/1 system/file
is_relative_uri/1 system/uri
keysort/2 standard/sort
last/2 basic/lists
last/3 basic/lists
last_pattern_replace/4 misc/text
last_pattern_replace/5 misc/text
length/2 basic/lists
limit/2 advanced/sequence
locale_keysort/2 standard/sort
locale_keysort/3 standard/sort
locale_sort/2 standard/sort
locale_sort/3 standard/sort
lock_acquire/1 misc/lock
lock_attempt/1 misc/lock
lock_attempt/2 misc/lock
lock_new/1 misc/lock
lock_release/1 misc/lock
make_directory/1 system/file

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 109 of 115

make_name/3 system/file
make_path/3 system/file
make_query/4 system/uri
make_spec/4 system/uri
make_uri/4 system/uri
member/2 basic/lists
message_make/3 system/locale
message_make/4 system/locale
mutex_new/1 misc/lock
new_local/2 experiment/surrogate
nl/0 stream/char
nl/1 stream/char
nonescalable_new/1 misc/lock
nth0/3 basic/lists
nth0/4 basic/lists
nth1/3 basic/lists
nth1/4 basic/lists
offset/2 advanced/sequence
open/3 stream/stream
open/4 stream/stream
ord_contains/2 advanced/ordsets
ord_difference/3 advanced/ordsets
ord_get/3 experiment/ordmaps
ord_intersection/3 advanced/ordsets
ord_put/4 experiment/ordmaps
ord_remove/3 experiment/ordmaps
ord_subset/2 advanced/ordsets
ord_union/3 advanced/ordsets
pattern_match/2 misc/text
pattern_match/3 misc/text
pattern_replace/4 misc/text
pattern_replace/5 misc/text
peek_byte/1 stream/byte
peek_byte/2 stream/byte
peek_char/1 stream/char
peek_char/2 stream/char
peek_code/1 stream/char
peek_code/2 stream/char
permutation/2 advanced/sets
phrase/2 standard/dcg
phrase/3 standard/dcg
user:phrase/3 experiment/tecto
phrase_abnormal/1 standard/dcg
user:phrase_abnormal/1 experiment/tecto
phrase_expansion/4 standard/dcg
user:phrase_expansion/4 experiment/tecto
pipe_new/1 misc/pipe
pipe_new/2 misc/pipe
pipe_offer/2 misc/pipe
pipe_offer/3 misc/pipe
pipe_poll/2 misc/pipe
pipe_poll/3 misc/pipe
pipe_put/2 misc/pipe
pipe_take/2 misc/pipe
plus/3 advanced/arith
print_error/1 stream/console

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 110 of 115

print_error/2 stream/console
print_message/1 stream/console
print_message/2 stream/console
print_stack_trace/1 stream/console
print_stack_trace/2 stream/console
put/4 experiment/maps
put_byte/1 stream/byte
put_byte/2 stream/byte
put_char/1 stream/char
put_char/2 stream/char
put_code/1 stream/char
put_code/2 stream/char
random/1 basic/random
random/2 basic/random
random_new/1 basic/random
random_new/2 basic/random
random_next/2 basic/random
random_next/3 basic/random
read/1 stream/term
read/2 stream/term
read_line/1 stream/console
read_line/2 stream/console
read_term/2 stream/term
read_term/3 stream/term
recorda_ref/1 experiment/ref
recordz_ref/1 experiment/ref
remove/3 advanced/sets
remove/3 experiment/maps
rename_file/2 system/file
reverse/2 basic/lists
select/3 basic/lists
set_error/1 stream/stream
set_input/1 stream/stream
set_local/2 experiment/surrogate
set_output/1 stream/stream
set_stream_length/2 stream/stream
set_stream_position/2 stream/stream
set_time_file/2 system/file
setof/3 standard/bags
setup_call_cleanup/3 standard/signal
sinh/2 basic/hyper
sort/2 standard/sort
stream_property/2 stream/stream
subset/2 advanced/sets
sys_atomic/1 standard/signal
sys_clean_thread/1 misc/clean
sys_clean_threads/2 misc/clean
sys_cleanup/1 standard/signal
sys_current_eq/2 misc/residue
sys_distinct/2 standard/sort
sys_get_lang/2 system/locale
sys_get_lang/3 system/locale
sys_goal_rebuilding/2 experiment/simp
sys_goal_simplification/2 experiment/simp
sys_heapof/3 standard/bags
sys_instance/1 basic/proxy

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 111 of 115

sys_instance/2 basic/proxy
sys_instance_of/2 basic/proxy
sys_instance_size/2 basic/proxy
sys_instance_size/3 basic/proxy
sys_keygroup/2 standard/sort
sys_modext_args/3 standard/apply
sys_modext_args/4 standard/apply
sys_modext_args/5 standard/apply
sys_modext_args/6 standard/apply
sys_modext_args/7 standard/apply
sys_modext_args/8 standard/apply
sys_modext_args/9 standard/apply
sys_new_surrogate/1 experiment/surrogate
sys_phrase/3 standard/dcg
sys_phrase_delay/1 standard/dcg
user:sys_phrase_delay/1 experiment/tecto
sys_phrase_expansion/4 standard/dcg
user:sys_phrase_expansion/4 experiment/tecto
sys_portray_eq/2 misc/residue
sys_rebuild_goal/2 experiment/simp
sys_rebuild_goal_arg/3 experiment/simp
sys_rebuild_term/2 experiment/simp
sys_receiver_class/2 basic/proxy
sys_simplify_goal/2 experiment/simp
sys_simplify_term/2 experiment/simp
sys_subclass_of/2 basic/proxy
sys_term_eq_list/2 misc/residue
sys_term_hash/3 standard/sort
sys_term_object/3 basic/proxy
sys_term_rebuilding/2 experiment/simp
sys_term_simplification/2 experiment/simp
sys_unwrap_eq/2 misc/residue
tanh/2 basic/hyper
term_expansion/2 standard/expand
term_expansion/2 standard/dcg
term_hash/2 standard/sort
term_hash/4 standard/sort
text_escape/2 system/xml
thread_abort/2 system/thread
thread_combine/1 system/thread
thread_combine/2 system/thread
thread_current/1 system/thread
thread_down/2 system/thread
thread_down/3 system/thread
thread_join/1 system/thread
thread_kill/1 system/thread
thread_new/2 system/thread
thread_sleep/1 system/thread
thread_start/1 system/thread
time_out/2 misc/time
ttyflush_output/0 stream/console
ttynl/0 stream/console
ttyread_line/1 stream/console
ttywrite/1 stream/console
ttywrite_term/2 stream/console
union/3 advanced/sets

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 112 of 115

unit/0 standard/expand
unslotted_new/1 misc/lock
uri_encode/2 system/uri
write/1 stream/term
write/2 stream/term
write_canonical/1 stream/term
write_canonical/2 stream/term
write_term/2 stream/term
write_term/3 stream/term
writeq/1 stream/term
writeq/2 stream/term
{}/3 standard/dcg

Package Local Predicates

Predicate Module
sys_flush_output/1 stream/byte
sys_get_alias/2 stream/stream
sys_nl/1 stream/char
sys_write/2 stream/term
sys_write_term/3 stream/term

Non-Private Meta-Predicates

Predicate Exp Body Rule Module
0/\0 yes no yes standard/expand
\(?,0,?) yes no no experiment/abstract
? ^0 yes yes no standard/expand
assertable_ref(-1,?) yes no no experiment/ref
assumable_ref(-1,?) yes no no experiment/ref
bagof(?,0,?) yes no no standard/bags
call_cleanup(0,0) yes no no standard/signal
call_residue(0,?) yes no no misc/residue
clause_ref(-1,0,?) no no no experiment/ref
compiled_ref(?,-1) no no no experiment/ref
expand_goal(0,0) no no no standard/expand
expand_term(-1,-1) no no no standard/expand
findall(?,0,?) yes no no standard/bags
goal_expansion(0,0) no no no standard/expand
goal_expansion(0,0) no no no standard/dcg
limit(?,0) yes no no advanced/sequence
offset(?,0) yes no no advanced/sequence
setof(?,0,?) yes no no standard/bags
setup_call_cleanup(0,0,0) yes no no standard/signal
sys_atomic(0) yes no no standard/signal
sys_clean_thread(0) yes no no misc/clean
sys_clean_threads(0,?) yes no no misc/clean
sys_cleanup(0) yes no no standard/signal
sys_current_eq(?,0) yes no no misc/residue
sys_goal_rebuilding(0,0) no no no experiment/simp
sys_goal_simplification(0,0) no no no experiment/simp
sys_heapof(?,0,?) yes no no standard/bags
sys_portray_eq(0,0) yes no no misc/residue

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 113 of 115

sys_rebuild_goal(0,0) no no no experiment/simp
sys_rebuild_term(-1,-1) no no no experiment/simp
sys_simplify_goal(0,0) no no no experiment/simp
sys_simplify_term(-1,-1) no no no experiment/simp
sys_term_rebuilding(-1,-1) no no no experiment/simp
sys_term_simplification(-1,-1) no no no experiment/simp
sys_unwrap_eq(0,0) yes no no misc/residue
term_expansion(-1,-1) no no no standard/expand
term_expansion(-1,-1) no no no standard/dcg
thread_new(0,?) yes no no system/thread
time_out(0,?) yes no no misc/time
{}(0,?,?) yes no no standard/dcg

Non-Private Closure-Predicates

Predicate Module
*->(2,2,?,?) standard/dcg
,(2,2,?,?) standard/dcg
2--> -3 standard/dcg
->(2,2,?,?) standard/dcg
.(2,2,?,?) standard/dcg
:(?,2,?,?) standard/apply
:(?,3,?,?,?) standard/apply
:(?,4,?,?,?,?) standard/apply
:(?,5,?,?,?,?,?) standard/apply
:(?,6,?,?,?,?,?,?) standard/apply
:(?,7,?,?,?,?,?,?,?) standard/apply
::(?,::(2),?,?) standard/apply
::(?,::(3),?,?,?) standard/apply
::(?,::(4),?,?,?,?) standard/apply
::(?,::(5),?,?,?,?,?) standard/apply
::(?,::(6),?,?,?,?,?,?) standard/apply
::(?,::(7),?,?,?,?,?,?,?) standard/apply
;(2,2,?,?) standard/dcg
\(?,1,?,?) experiment/abstract
\(?,2,?,?,?) experiment/abstract
\(?,3,?,?,?,?) experiment/abstract
\(?,4,?,?,?,?,?) experiment/abstract
\(?,5,?,?,?,?,?,?) experiment/abstract
\(?,6,?,?,?,?,?,?,?) experiment/abstract
\+(2,?,?) standard/dcg
^(?,2,?,?) experiment/abstract
^(?,3,?,?,?) experiment/abstract
^(?,4,?,?,?,?) experiment/abstract
^(?,5,?,?,?,?,?) experiment/abstract
^(?,6,?,?,?,?,?,?) experiment/abstract
^(?,7,?,?,?,?,?,?,?) experiment/abstract
call(1,?) standard/apply
call(2,?,?) standard/apply
call(3,?,?,?) standard/apply
call(4,?,?,?,?) standard/apply
call(5,?,?,?,?,?) standard/apply
call(6,?,?,?,?,?,?) standard/apply
call(7,?,?,?,?,?,?,?) standard/apply
phrase(2,?) standard/dcg

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 114 of 115

phrase(2,?,?) standard/dcg
user:phrase(2,?,?) experiment/tecto
phrase_expansion(2,?,?,0) standard/dcg
user:phrase_expansion(2,?,?,0) experiment/tecto
sys_phrase(2,?,?) standard/dcg
sys_phrase_expansion(2,?,?,0) standard/dcg
user:sys_phrase_expansion(2,?,?,0) experiment/tecto

Non-Private Syntax Operators

Level Mode Operator Module
1200 xfx --> standard/dcg
200 xfy \ experiment/abstract

Pictures

Es konnten keine Einträge für ein Abbildungsverzeichnis gefunden werden.

Tables

Table 1: Compatibility Matrix for Interactions ..18
Table 2: Compatibility Matrix for the Token Syntax ...20
Table 3: Compatibility Matrix for the Token Syntax ...22
Table 4: Compatibility Matrix for the Standard Package ...36
Table 5: Compatibility Matrix for the Basic Package ...48
Table 6: Compatibility Matrix for the Advanced Package ..55
Table 7: Compatibility Matrix for the Standard Package ...62
Table 8: Predefined Write Predicates ...66
Table 9: Context Dependent Spacing ...66
Table 10: Compatibility Matrix for the Stream Theory ...75
Table 11: Compatibility Matrix for the Token Syntax ...88
Table 12: Compatibility Matrix for the Token Syntax ...99

Jan Burse Runtime Frequent XLOG Technologies GmbH

May 25, 2019 jekejeke_freq_run_2019_04_25_e.docx Page 115 of 115

Acronyms
DCGD [1]

References

[1] ISO/IEC DTR 13211{3:2006}, Definite clause grammar rules, Jonathan Hodgson

jpehodgson@verizon.net, July 30, 2015
http://www.complang.tuwien.ac.at/ulrich/iso-prolog/dcgs/dcgsdraft-2015-07-30.pdf

[2] Szeredi, P. (1999): Contributions To Or-Parallel Logic Programming, PhD Thesis, Pé-
ter Szeredi, Techical University of Budapest, December 1997
http://www.cs.bme.hu/~szeredi/docs/SzerediPhd.pdf

http://www.complang.tuwien.ac.at/ulrich/iso-prolog/dcgs/dcgsdraft-2015-07-30.pdf
http://www.cs.bme.hu/~szeredi/docs/SzerediPhd.pdf

	1 Introduction
	2 Frequent Examples
	2.1 Flag Example
	2.2 Palindrome Example [ISO]
	2.3 Fruits Example
	2.4 Hello Example

	3 Frequent Conversations
	3.1 Ensure Loaded
	3.2 Make
	3.3 Unload File
	3.4 Compatibility Matrix

	4 Frequent Syntax
	4.1 Term Syntax
	Compatibility Matrix

	4.2 Text Syntax
	Grammar Rules
	Compatibility Matrix

	4.3 Miscellaneous Definitions
	Prolog Flags
	Predicate Properties
	Source Properties

	5 Frequent Theories
	5.1 Standard Package [partially preloaded]
	Module apply [preloaded]
	Module bags [preloaded]
	Module expand [preloaded]
	Module dcg
	Module signal [preloaded]
	Module sort [preloaded]
	Compatibility Matrix

	5.2 Basic Package [partially preloaded]
	Module lists
	Module random
	Module hyper
	Module proxy
	Module array
	Module utility [Preloaded]
	Module score
	Compatibility Matrix

	5.3 Advanced Package
	Module arith
	Module sets
	Module ordsets
	Module sequence
	Module aggregate
	Compatibility Matrix

	5.4 Experiment Package [partially preloaded]
	Module maps
	Module simp [preloaded]
	Module abstract
	Module ordmaps
	Module ref
	Compatibility Matrix

	5.5 Stream Package [partially preloaded]
	Module char [Preloaded]
	Module byte [Preloaded]
	Module term [Preloaded]
	Module stream [Preloaded]
	Module console
	Module xml
	Compatibility Matrix

	5.6 System Package
	Module file
	Module uri
	Module group
	Module thread
	Module zone
	Module locale
	Module domain
	Compatibility Matrix

	5.7 Miscellaneous Package
	Module text
	Module residue
	Module lock
	Module pipe
	Module time
	Module socket
	Module http
	Compatibility Matrix

	6 Appendix Example Listings
	6.1 Flag Example
	Prolog Text flag
	Prolog Text flag2

	6.2 Palindrome Example [ISO]
	Prolog Text palin
	Prolog Text palin2

	6.3 Fruits Example
	Prolog Text fruit
	Prolog Text fruit2

	6.4 Hello Example
	Prolog Text hello
	Image piglet

	Acknowledgements
	Indexes
	Public Predicates
	Package Local Predicates
	Non-Private Meta-Predicates
	Non-Private Closure-Predicates
	Non-Private Syntax Operators

	Pictures
	Tables
	Acronyms
	References

