

Jekejeke Runtime Deployment

Version 1.3.0, August 28th, 2018

XLOG Technologies GmbH

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 2 of 60

Jekejeke Prolog

Runtime Library 1.3.0

Deployment Methods

Author: XLOG Technologies GmbH

Jan Burse
Freischützgasse 14
8004 Zürich
Switzerland

Date: August 28th, 2016
Version: 0.10

Participants: None

Warranty & Liability
To the extent permitted by applicable law and unless explicitly otherwise agreed upon, XLOG
Technologies GmbH makes no warranties regarding the provided information. XLOG Tech-
nologies GmbH assumes no liability that any problems might be solved with the information
provided by XLOG Technologies GmbH.

Rights & License

All industrial property rights regarding the information - copyright and patent rights in particu-
lar - are the sole property of XLOG Technologies GmbH. If the company was not the origina-
tor of some excerpts, XLOG Technologies GmbH has at least obtained the right to repro-
duce, change and translate the information.

Reproduction is restricted to the whole unaltered document. Reproduction of the information
is only allowed for non-commercial uses. Small excerpts can be used if properly cited. Cita-
tions must at least include the document title, the product family, the product version, the
company, the date and the page. Example:

 … Defined predicates with arity>0, both static and dynamic, are indexed on

the functor of their first argument [1, p.17] ...

[1] Language Reference, Jekejeke Prolog 0.8.1, XLOG Technologies GmbH,
Switzerland, February 22nd, 2010

Trademarks

Jekejeke is a registered trademark of XLOG Technologies GmbH.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 3 of 60

Table of Contents

1 Introduction ... 5

2 Terminal Deployment .. 6
2.1 Table Data .. 6
2.2 Execution Flow ... 7
2.3 Query Interpreter .. 8
2.4 Terminal Main Class ..10
2.5 Example Uses ...12

3 Standalone Deployment ...13
3.1 Execution Flow ..13
3.2 User Interface Pane ...15
3.3 Progress Bar ...18
3.4 Standalone Frame ...19
3.5 Example Uses ...20

4 Applet Deployment ...22
4.1 Applet Component ...22
4.2 HTML Page ...22
4.3 Example Uses ...24

5 Servlet Deployment ..25
5.1 Execution Flow ..25
5.2 Data Holder ...27
5.3 HTML Page ...28
5.4 Web XML ...30
5.5 Example Uses ...30

6 Client Deployment ..31
6.1 Prolog Agent ..31
6.2 Execution Flow ..32
6.3 Service Page ...34
6.4 Interpreter Stub..35
6.5 Client Frame ..36
6.6 Example Uses ...37

7 Database Deployment..39
7.1 Prolog Driver ...39
7.2 Statement API ...40
7.3 Database Frame ..42
7.4 Example Uses ...42

8 Mobile Deployment ..44
8.1 Execution Flow ..44
8.2 Activity Screens ...46
8.3 Progress Bar ...48
8.4 Android Manifest ..49
8.5 Example Uses ...50

9 Example Artefacts ..52
9.1 Terminal Deployment...53
9.2 Standalone Deployment ..54
9.3 Applet Deployment ..55
9.4 Servlet Deployment ...56
9.5 Client Deployment ...57
9.6 Database Deployment ...58
9.7 Mobile Deployment ..59

Pictures ..60

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 4 of 60

Tables ..60

References ...60

Change History
Jan Burse, April 1th, 2011, 0.1:

¶ Initial Version.
Jan Burse, Mai 8th, 2011, 0.2:

¶ Some fixes.
Jan Burse, August 17th, 2011, 0.3:

¶ Paths simplified.
Jan Burse, October 3rd, 2011, 0.4:

¶ Database example introduced.
Jan Burse, April 2nd, 2012, 0.5:

¶ Some fixes.
Jan Burse, July 19th, 2012, 0.6:

¶ Toolkit replaced by toolkit library and variable arguments compound creation used.
Jan Burse, October 16th, 2012, 0.7:

¶ Some fixes and mobile example introduced.
Jan Burse, December 12th, 2013, 0.8:

¶ Some fixes.
Jan Burse, June 7th, 2016, 0.9:

¶ Updated to new programming interface and references to open source corner.
Jan Burse, August 28th, 2018, 0.10:

¶ Updated to modified programming interface and GUI progress bars.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 5 of 60

1 Introduction
We will show various methods how the Jekejeke Prolog runtime can be practically deployed.
As a running example, we will use a dynamic table query. We will start each deployment
method with a basic characterization. The explained code for the dynamic table query then
follows for each scenario. We demonstrate the following scenarios:

¶ Terminal Deployment: The application consists of a static main method. The appli-
cation will interact with the end-user via the standard input and standard out.

¶ Standalone Deployment: The application consists of a Swing frame. The application
will interact with the end-user via graphical input fields, buttons and output tables.

¶ Applet Deployment: The application consists of a Swing applet. The application will
again interact with the end-user via the graphic widgets, but this time from within the
browser.

¶ Servlet Deployment: The application consists of a Java server page. As a benefit
the browser history can be used.

¶ Client Deployment: The application consists of a graphical user interface that com-
municates with the Java server page.

¶ Database Deployment: The application consists of a graphical user interface that
communicates with a JDBC database.

¶ Mobile Deployment: The application consists of a graphical user interface for a mo-
bile device.

¶ Appendix Listings & Instructions: The full source code of the artefacts is given. We
also give more details about compiling and executing the examples.

The table that is dynamically queried contains Unicode data. All the deployment methods are
able to accept and display Unicode data, except for some terminals. The main testing plat-
form was Windows, but the results should also translate to other platforms.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 6 of 60

2 Terminal Deployment
The application consists of a static main method. The application will interact with the end-
user via the standard input and standard out.

¶ Table Data: The queried table is stored as a Prolog text. The Prolog text can com-
fortably be tested in the Jekejeke Prolog development environment.

¶ Execution Flow: We give an overview of the components and the execution flow that
we will use in the solution. Some components will later be reused.

¶ Query Interpreter: The table is dynamically queried. For this purpose we make use
of the Java class Interpreter of the Jekejeke Prolog programming interface. The Jeke-
jeke Prolog runtime must be present when compiling the class.

¶ Terminal Main Class: This class provides a terminal user-interface to the query in-
terpreter. The Jekejeke Prolog runtime must be present when executing the class.

¶ Example Uses: The success of our efforts varies in which environment our applica-
tion is run. Not all standard out support Unicode characters.

2.1 Table Data
The queried table is stored as a Prolog text. The Prolog text can comfortably be tested in the
Jekejeke Prolog development environment. The Prolog text is stored in a file “table.p” and it
basically contains only one predicate employee/4. This predicate lists the first name and
name of some imaginary employees together with their age and current salary. The following
excerpt shows some of the example facts that define the predicate employee/4:

% employee(Firstname, Name, Age, Salary)

employee('ʉʝʨʛʝʡ', 'ʀʚʘʥʦʚ', 53, 18500).

employee('ʉʝʨʛʝʡ', 'ɹʝʣʷʝʚ', 53, 19000).

employee('Hans', 'Fischer', 62, 21500).

...

Since we are in the course of using Jekejeke Prolog 0.8.8 which has the Unicode extension,
we used some facts that contain Unicode strings for demonstration and testing purpose. Be-
cause our first name and name atoms start with upper case letters we have to place them in
single quote strings, otherwise they would be recognized as variables. The file “table.p”
needs to be encoded in some encoding that covers all the used Unicode characters, and
when loading this encoding needs to be used again.

We have used the default encoding of Jekejeke Prolog 0.8.8 which is UTF-8. The file can
easiest be consulted in the development environment when the path of the file is included in
the class path. The class path can be set via the menu item File | Settings. The development
environment has to be restarted when the class path is changed. More information can be
found in the console manual documentation.

After having consulted the Prolog text of the table we can query the employee/4 predicate.
The simplest query does not use any restrictions on the predicate. We simply use different
variables for each argument position of the predicate. As a result we will be able to retrieve
the arguments of the facts that are stored for the predicate employee/4. For each fact one
solution is generated which we can explore via backtracking:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 7 of 60

?- [example01/table].

Yes

?- employee(Firstname, Name, Age, Salary).

Firstname = 'ʉʝʨʛʝʡ',

Name = 'ʀʚʘʥʦʚ',

Age = 53,

Salary = 18500 ;

Firstname = 'ʉʝʨʛʝʡ',

Name = 'ɹʝʣʷʝʚ',

Age = 53,

Salary = 19000 ;

Firstname = 'Hans',

Name = 'Fischer',

Age = 62,

Salary = 21500 ;

...

We can also pose more difficult queries by instantiating the queried predicate. So when we
for example set the second argument to ‘Иванов’ [Iwanov] we will only retrieve those facts
that exactly match the name ‘Иванов’ [Iwanov]. We will use the unification operator (=)/2 to
do it. Again we can explore the solutions via backtracking:

?- Name = 'ʀʚʘʥʦʚ', employee(Firstname, Name, Age, Salary).

Firstname = 'ʉʝʨʛʝʡ',

Age = 53,

Salary = 18500 ;

...

A further way to enhance our query is by making use of arithmetical predicates. Among the
arithmetical predicates we find inequality checks such as less than or equal (‘=<’) and greater
than or equal (‘>=’). So when we chain the query predicate with appropriate arithmetic predi-
cates we can filter the employee facts. Again we can explore the solutions via backtracking:

?- employee(Firstname, Name, Age, Salary), Age >= 20, Age =< 50.

Firstname = 'ʌʠʣʠʧʧ',

Name = 'ʀʚʘʥʦʚ',

Age = 32,

Salary = 15000 ;

...

The idea behind the applications in this document will be to provide the end-user with a form
based user interface and dynamically build and execute a query on the employee table. The
dynamically built queries will cover what we have already seen, namely instantiation and
constant arithmetic predicates on predicate arguments.

2.2 Execution Flow
We give an overview of the components and the execution flow that we will use in the solu-
tion. Some components will later be reused. In particular we will define a query component
that will encapsulate the knowledgebase setup, the query building and the query execution.
Further there is a data component with the Prolog text of the queried table. Both components
will be used across all the deployment scenarios.

We envision the terminal application as providing use two functions. It should us show how a
query is built and it should us provide the results to a query execution. The terminal applica-

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 8 of 60

tion should interact with the end-user solely by means of the standard input and the standard
output. These two streams are directly accessed from Java system environment and not me-
diate by the Jekejeke Prolog interpreter.

Terminal Query

4) make

3) criteria

6) list

5) query

7) result

Picture 1: Terminal Application Flow

In summary the application flow will work as follows:

1. The terminal application sets up the Prolog runtime.

2. The terminal application consults the Prolog code.

3. The terminal application asks the end-user for the search criteria.

4. The terminal application lets the query interpreter build the query.

5. The terminal application shows the query term to the end-user.

6. The terminal application lets the query interpreter execute the query.

7. The terminal application shows the result to the end-user.

8. The terminal application tears down the Prolog runtime.

Including a tear down step is a good practice. It might be that the main routine of the Java
class is called without exiting the current process. In case the current process does not exit
the knowledge base will be reclaimed by the Java garbage collection since there will be no
more local variable referencing it. The Prolog runtime might nevertheless have held re-
sources, which are only freed if the tear down procedure is called.

2.3 Query Interpreter
The table is dynamically queried. For this purpose we use the Java class Interpreter of the
Jekejeke Prolog programming interface. The Jekejeke Prolog runtime must be present when
compiling the class. The query interpreter Java class has no interaction with the end-user.
We will only be able to manually first test it when the Terminal class is ready. In the following
we will provide a little walkthrough and explain how the responsibilities of this class are im-
plemented. The full class listing can be found in the appendix.

Let’s turn to the main duty of the query interpreter class. The interpreter class should dynam-
ically build a query for us. The query building process will be dependent on some search cri-
teria that the end user has provided. We will distinguish string search criteria and number
search criteria. For the string search criteria we will only provide instantiation search. And for
the number search criteria we will provide arithmetic interval search. The search criteria are
handed over to the query interpreter via a couple of setters. Here we see some example set-
ters for the string criteria name and part of the number criteria age:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 9 of 60

 /**

 * <p>Set the name search criteria.</p>

 *

 * @param n The name search criteria.

 */

 public void setName(String n) {

 name = n;

 }

 /**

 * <p>Set the age from search criteria.</p>

 *

 * @param af The age from search criteria.

 */

 public void setAgeFrom(String af) {

 agefrom = af;

 }

The query building can be invoked via the method makeQuery(). The query building starts
with creating the query predicate employee/4 and placing variables in each argument posi-
tion. This corresponds to an unrestricted query. Depending on the search criteria the query
will then be successively restricted. The code for the initialization of the query term looks as
follows:

 /**

 * <p>Create the query term.</p>

 *

 * @param vars The query variables.

 * @return The query term.

 */

 public Object makeQuery(Term Var [] vars) {

 ArrayList <AbstractTerm > literals = new ArrayList <AbstractTerm >();

 literals.add(new TermCompound(inter, "employee",

 vars[COLUMN_FIRSTNAME], vars[COLUMN_NAME],

 vars[COLUMN_AGE], vars[COLUMN_SALARY]));

Now the idea is that a blank input for a search criteria means, that this search criteria is not
used. It will not mean that we search for a fact where the argument matches blank, it will
have the meaning of don’t care. In case of a string search criteria we insert a unification con-
dition in the front of the query that is currently built. Here is the corresponding code seen for
the search criteria firstname:

 if (!"".equals(name))

 literals. add (0, new TermCompound(inter, "=",

 first name, vars[COLUMN_ FIRSTNAME]));

In case of a number search criteria we append constant arithmetic predicates at the end of
the query that is currently built. Our interval search has a “from” criteria and a “to” criteria.
Both criteria can be empty. This allows us to provide open interval search or even to use a
number criteria not at all in a search. Here is the corresponding code seen for part of the
search criteria age:

 if (!"".equals(agefrom))

 literals. add (new TermCompound (inter, "=<",

 Integer.valueOf(agefrom), vars[COLUMN_AGE]));

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 10 of 60

We now turn to the last responsibility of our query interpreter. The query interpreter should
not only be able to build a query, but also to execute one. We have opted for a list oriented
interface between the query interpreter and its clients. Thus when we execute a query we will
get the results in the form of a list of rows. To obtain the rows the query interpreter will open
a call-in to the Jekejeke Prolog system:

 /* *

 * <p>List the rows of the search result.</p>

 *

 * @param vars The query variables.

 * @param queryTerm The query term.

 * @return The rows.

 * @throws InterpreterException Problem evaluating the query.

 * @throws InterpreterMessage Problem evaluating the query.

 */

 public Object[][] listRows(TermVar[] vars, Object queryTerm)

 throws InterpreterException, InterpreterMessage {

 ArrayList <Object[]> res = new ArrayList <Object[]>();

 CallIn callin = inter.iterator(queryTerm);

Each row will be a list of values. We will use the objects that Jekejeke Prolog will provide us.
This means we will get Strings from atom fact arguments and BigIntegers from integer fact
arguments. The query interpreter will then use backtracking over the query term to populate
the result with the rows. The backtracking is initiated via the method unfoldFirst(). And con-
tinued via the method unfoldNext().

 while (callin.hasNext()) {

 callin.next();

 Object[] row = new Object[]{

 vars[Query.COLUMN_FIRSTNAME].deref(),

 vars[Query.COLUMN_NAME].deref(),

 vars[Query.COLUMN_AGE].deref(),

 vars[Query.COLUMN_SALARY].deref()

 };

 res. add (row);

 }

This approach will retrieve all solutions into a data structure. This is of course not necessary
for the Terminal application, since each solution will be one by one sent to the standard out-
put and can then be forgotten. On the other hand as we will later see, when the solutions are
displayed in a table, it is handy to have them all in a data structure so that the table data can
easily be retrieved for rendering. Variations on the theme would include returning only a lim-
ited number of solutions, returning solutions beginning with a specific position row number, or
table models that dynamically retrieve solutions.

2.4 Terminal Main Class
This class provides a terminal user-interface to the query interpreter. The Jekejeke Prolog
runtime must be present when executing the class. The terminal class is the intermediary
between the end-user and the query interpreter. How the query interpreter implements its
responsibility has already been described in the previous section. The interaction now works
in that the terminal class first sets up the knowledgebase as follows:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 11 of 60

 /**

 * <p>Main method.</p>

 *

 * @param args The command line arguments, not used.

 */

 public static void main(String[] args) {

 /* setup the Prolog runtime */

 Knowledgebase know = new Knowledgebase(ToolkitLibrary.DEFAULT);

 Interpreter inter = know.iterable();

 Knowledgebase.initKnowledgebase(inter);

 /* load the Prolog code */

 Object consultGoal = inter.parseTerm("consult(library("+

 " example01/table))");

 inter.iterator(consultGoal).next().close();

The above shows how we fulfil the initialization responsibility of the main class. We need to
create a knowledge base and consult the file table.p. For this purpose we dynamically build a
goal of the form consult(library(example01/table)) and submit this goal to the interpreter. We
can use the method chaining next().close() method, to executes the goal once and to then
abort any backtracking.

After these first steps the query object is ready and can be populated with the search criteria.
Our forms based interface on top of the standard input and standard output will be very primi-
tive. We simply write out the names of the search criteria and then read the value of the
search criteria. This method has the advantage that we can pass the blank to the query in-
terpreter. But it has the disadvantage that for example numbers are not validated. As an ex-
ample the acquisition of the search criteria firstname can be seen:

 /* read the search criteria */

 Query query = new Query(inter);

 Writer ttyout = (Writer) inter.getProperty(

 ToolkitLibrary.PROP_SYS_DISP_OUTPUT);

 Reader ttyin = (Reader) inter.getProperty(

 ToolkitLibrary.PROP_SYS_DISP_INPUT);

 ttyout.write("Firstname: ");

 ttyout.flush();

 query.setFirstname(ForeignConsole.readLine(ttyin));

When all search criteria have been collected, we can let the query interpreter build the query
term. The query term will be a normal Prolog term that also contains variables. The normal
write operation will generate synthetic names of the form “_<letter><number>” for the varia-
bles. To make the query term more readable we will use a write operation that makes use of
a variable map. The names of the variables will be provided by the query interpreter itself.
The corresponding code reads as follows:

 String[] colids = query.listColumnIdentifiers();

 TermVar [] vars = query.makeVars();

 Object queryTerm = query.makeQuery(vars);

 inter.unparseTerm (ttyo ut, query.makeVariableNames(colids,

 vars), queryTerm);

The names of the variables can be used as column names for the result table. To format the
result table on the standard output we use the horizontal tab control character (‘\t’). Iterating
over the rows and then over the row values does the job for displaying the table The corre-
sponding code looks as follows:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 12 of 60

 Object[][] rows = query.listRows(vars, queryTerm);

 for (int j = 0; j < rows.length; j++) {

 Object[] row = rows[j];

 for (int i = 0; i < row.length; i++) {

 if (i != 0)

 ttyout.write(' \ t');

 ttyout.write(row[i].toString());

 }

 ttyout.write(' \ n');

 ttyout.flush();

 }

2.5 Example Uses
The success of our efforts varies in which environment our application is run. Not all standard
out support Unicode characters. The problem is not the PrintWriter that implements the
standard out, but the underlying byte stream. When run from inside the IntelliJ environment
the standard output is able to reproduce Unicode. Here we see a query with the Name crite-
ria set to some value. As can be seen the facts are correctly reproduced:

Picture 2: IntelliJ Name Query

When we use a Windows console as our environment, we will not be able to reproduce
Unicode. It seems that the default output stream translates characters that are outside of the
256 character range into question marks (?). We tried something with the “chcp” command,
but we did not yet find a way around this problem.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 13 of 60

3 Standalone Deployment
In this method the application consists of a Swing frame. The application will interact with the
end-user via graphical input fields, buttons and output tables.

¶ Execution Flow: We give an overview of the components and the execution flow that
we will use in the solution. Some components will later be reused.

¶ User Interface Pane: The user interface pane is the container for the graphical widg-
ets. Besides the input fields we will have buttons and a table.

¶ Progress Bar: While the knowledge base is loading or a query is processed we show
an indeterminate progress bar.

¶ Standalone Frame: The standalone frame displays the user interface pane in a win-
dow. It is also the mediator between the pane and the query interpreter.

¶ Example Uses: The default look and feel varies with the used platform. We need a
running window manager to run the standalone application.

3.1 Execution Flow
We give an overview of the components and the execution flow that we will use in the solu-
tion. Some components will later be reused. In particular we will define a pane component
that will encapsulate the Swing user interface. The same Swing user interface will be reused
by the applet deployment.

We envision a slightly different flow from the terminal application. Namely the end-user will
have more choices. The choices start already when providing the search criteria. Since we
will have input fields for the search criteria, it will be easier for the end-user to leave a field
blank. He simple does not have to click into it and provide some value. Then the choices
continue since we plan to provide two buttons. One button is there to display the built query
term. The other button is there to display the query result.

Query
5) make

3) criteria

6) list

Pane

7) results

4) search

Picture 3: Standalone Application Search Flow

The above diagram only shows the flow in the context of pressing the search button which
will display the query results. This can be considered the main flow. Then there is the alter-
native flow of the debug button which will display the built query. What is also missing in the
above diagram is the initialization, which has do be done only once. In summary the applica-
tion flow will work as follows:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 14 of 60

Main Scenario:

1. The standalone application sets up the Prolog runtime.

2. The standalone application consults the Prolog code.

3. The end-user enters search criteria in the user interface panel.

4. The end-user presses the search button in the user interface panel.

5. The standalone application lets the query interpreter build the query.

6. The standalone application lets the query interpreter execute the query.

7. The user interface panel shows the result to the end-user.

8. The flow continues with step 3.

Alternative Scenario:

4a.1. The end-user presses the debug button in the user interface panel.

4a.2. The standalone application lets the query interpreter build the query.

4a.3. The user interface panel shows the query term to the end-user.

4a.4. The flow continues with step 3.

Although we have shown the flow in great detail here, two reservations are appropriate. First
of all we have omitted any error handling scenarios and the closing of the window. Second
the above flow does not show much reuse. For example the main scenario and the alterna-
tive scenario do both retrieve the search criteria and build the query. As result of these two
reservations the later implemented code might look a little bit different and eventually include
additional functionality.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 15 of 60

3.2 User Interface Pane
The user interface pane is the container for the graphical widgets. Besides the input fields we
will have buttons and a table. From the main scenario we already see what responsibilities
the user interface panel will have. At the beginning it should be possible to initialize it for the
given frame. We do the initialization more generally, since we want to reuse the user inter-
face panel for the applet component. Therefore we define an initPane() method as follows:

 /**

 * <p>After the knowledge base is loaded or a query

 * has been processed we use the following layout with

 * the buttons enabled:</p>

 * <pre>

 * Firstname: []

 * Name: []

 * Age: From [] To []

 * Salary: From [] To []

 * [Debug] [Search]

 * + -------------- Results --------------- +

 * | |

 * | |

 * + -------------------------------------- +

 * <pre>

 *

 * @par am r The root pane.

 * @param s The action listener.

 */

 void initPane(JRootPane r, ActionListener s) {

Inside the init method first the input fields are placed on the plane. String input fields are left
adjusted, whereas number input fields are right adjusted. For the number search criteria two
number input fields are necessary, one for the “from” value and one for the “to” value. Here is
an excerpt seen that initializes the name search criteria and part of the age search criteria:

 c .add(new JLabel("Name:"), new GridBagConstraints(0, 1,

 1, 1, 0.0, 0.0

 , GridBagConstraints.WEST,

 GridBagConstraints.NONE,

 new Insets(2, 2, 2, 2), 0, 0));

 c.add(name, new GridBagConstr aints(1, 1,

 4, 1, 0.0, 0.0

 , GridBagConstraints.WEST,

 GridBagConstraints.NONE,

 new Insets(2, 2, 2, 2), 0, 0));

 c.add(new JLabel("Age:"), new GridBagConstraints(0, 2,

 1, 1, 0.0, 0.0

 , GridBagConstraints.WEST,

 GridBagConstraints.NONE,

 new Insets(2, 2, 2, 2), 0, 0));

 c.add(new JLabel("From"), new GridBagConstraints(1, 2,

 1, 1, 0.0, 0.0

 , GridBagConstraints.WEST,

 GridBagConstraints.NONE,

 new Insets(2, 2, 2, 2), 0, 0));

 ageFrom.setHorizontalAlignment(SwingConstants.RIGHT);

 c.add(ageFrom, new Grid BagConstraints(2, 2,

 1, 1, 0.0, 0.0

 , GridBagConstraints.WEST,

 GridBagConstraints.NONE,

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 16 of 60

 new Insets(2, 2, 2, 2), 0, 0));

For the buttons we use a sub-panel so that we can place the buttons close together and right
adjusted to the surrounding container. The buttons will register themselves on the action lis-
tener provided to the initialization method. Because we have two buttons, we will give them
different action command strings. This way the action listener can easily detect which button
was pressed. The code reads as follows:

 /* layout the action buttons */

 JPanel panel = new JPanel();

 panel.setLayout(new FlowLayout());

 JButton debug = new JButton("Debug");

 debug.setActionCommand("debug");

 debug.addActionListener(s);

 panel.add(debug);

 JButton search = new JButton("Search");

 search.setActionCommand("search");

 r.setDefaultButton(search);

 search.addActionListener(s);

 panel.add(search);

 c.add(panel, new GridBagConstraints(0, 4,

 5, 1, 0.0, 0.0

 , GridBagConstraints.EAST,

 GridBagConstraints.NONE,

 new Insets (2, 2, 2, 2), 0, 0));

The initialization method also contains code to place the table. The details can be found in
the appendix. The next responsibility of the user interface pane is the access to the search
criteria. String values and number values are returned as strings, so that blank values can
also be represented. For number search criteria there are two accessors, one for the “from”
value and one for the “to” value. Here is an excerpt seen that allows accessing the name
search criteria and part of the age search criteria:

 /**

 * <p>Retrieve the name.

 *

 * @return The name.

 */

 String getName() {

 return name.getText();

 }

 /**

 * <p>Retrieve the age from.

 *

 * @return The age from.

 */

 String getAgeFrom() {

 return ageFrom.getText();

 }

We now turn to the last responsibility of the user interface pane. Namely the user interface
panel should be able to show the query results in a table. We have opted for a solution
where the query results also carries information of the available columns. So the query result
can come with varying number of columns depending on the query. Although in the current
example we do not make use of this possibility. The update of the columns and the table
reads as follows:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 17 of 60

 /**

 * <p>Set the result.</p>

 *

 * @param colids The column identifiers.

 * @param rows The rows.

 */

 void setResult(String[] colids, Object[][] rows) {

 /* reset all rows and set the columns */

 ((DefaultTableModel) result.getModel()).setDataVector(null,

 colids);

 DefaultTableCellRenderer renderer = (DefaultTableCellRenderer)

 result.getDefaultRenderer(BigInteger.class);

 renderer.setHorizo ntalAlignment(SwingConstants.RIGHT);

 for (int i = 0; i < colids.length; i++)

 if (colids[i].endsWith("#"))

 result.getColumnModel().getColumn(

 i).setCellRenderer(renderer);

 /* set the rows */

 for (int i = 0; i < rows.length; i++)

 ((DefaultTableModel) result.getModel()).addRow(rows[i]);

 }

The table itself uses a default column model and a default table model. These models are
powerful enough for the dynamic configuration we have in mind. The update of the column
model not only sets all the column names. It also right adjusts number columns by updating
the corresponding cell renderer. Since the table is not editable, updating the cell renderer is
enough. Otherwise we would need to update the cell editor as well.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 18 of 60

3.3 Progress Bar
The Swing toolkit provides a separate GUI thread to process user interface interactions. This
separate thread should not process long running jobs. Among the long running jobs we find
for example initializing the Prolog interpreter and possibly running queries. To get these long
running jobs away of the Swing GUI thread we start a new thread.

The new thread will process the long running job in the background and the Swing GUI will
remain responsive. So that only one long running job is executed one at a time, we will disa-
ble our own user interface pane and show an indeterminate progress bar. The background
job will then enable our own user interface pane as soon as it has finished:

 / **

 * <p>While the knowledge base is loading or a query

 * is processed we use the following layout with the

 * buttons disabled:</p>

 * <pre>

 * Firstname: []

 * Name: []

 * Age: From [] To []

 * Salary: From [] To []

 * (Debug) (Search)

 * +------------ Progress Bar ------------ +

 * | |

 * | |

 * + -------------------------------------- +

 * <pre>

For this job processing the user interface pane provides the following method. We only
sketch the main parts of this method. For more details on this method we recommend con-
sulting the source code. The background job is simply started as an out of the box Java
thread via first creating it and then starting it. When the job has completed it will use a Swing
utility to post a custom even that will reset the user interface pane:

 / * *

 * <p>Start a job.</p>

 *

 * @param job The long running job.

 * @param job2 The GUI update job.

 */

 public void startJob(final Runnable job, final Runnable job2) {

 new Thread((Runnable) () - > {

 job.run();

 SwingUtilities.invokeLater(() - > {

 job2.run();

 });

 }).start();

To switch between the list and the progress bar we use a card layout. This layout allows
stacking different Swing components one on top of another. Only the top card will be visible
and an arbitrary card can be selected as the top card. The layout will automatically do revali-
dation and repainting. The layout has the further advantage that it is compatible with packing
the main frame to get a computed size.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 19 of 60

3.4 Standalone Frame
The standalone frame displays the user interface pane in a window. It is also the mediator
between the pane and the query interpreter. The initialization steps of the main scenario are
directly done in the constructor of the standalone frame. The standalone frame has instance
fields that point to the knowledge base and the pane. During the construction of the
standalone frame these two fields will be initialized. The constructor can be made private,
since it will be only called by us. The corresponding code reads as follows.

 /**

 * <p>Setup the knowledgebase and init the pane.</p>

 */

 private Standalone() {

 /* init the pane */

 pane.initPane(getRootPane(), this);

 setTitle("Deployment Study - Standalone");

 setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

 /* load the Prolog */

 pane.startJob(() - > {

 initKnowledgebas e();

 }, new Runnable() {

 public void run() {

 }

 });

 }

Note the setting of the default close operation to dispose, which will remove the window from
the screen and not simply hide it. The initialization is not finished by the constructor only. The
standalone frame will also have a static main method. This method can be called from the
outside and it will make visible one single standalone frame. Although the main method will
return, the Java virtual machine will wait till all windows have been disposed. Details of the
main method code can be found in the appendix.

The two buttons are handled by the same action listener. In both cases we will first retrieve
the search criteria values and hand them over to the query interpreter. We will then let the
query interpreter build the query term. In case of the search button we will not show the que-
ry term, but directly proceed to executing the query and then displaying the result. Whether
the search button was pressed or not is detected by the action command of the action event.
The corresponding code reads as follows:

 /**

 * <p>Handle the search and the debug button.</p>

 *

 * @param e The action event.

 */

 public void actionPerformed(ActionEvent e) {

 try {

 Interpreter inter = know.iterable();

 final Query query = new Query(inter);

 /* retrieve the search criteria and build the query */

 query.setFirstname(pane.getFir stName());

 query.setName(pane.getName());

 query.setAgeFrom(pane.getAgeFrom());

 query.setAgeTo(pane.getAgeTo());

 query.setSalaryFrom(pane.getSalaryFrom());

 query.setSalaryTo(pane.getSalaryTo());

 final String[] colids = query.listColumnIdentifiers();

 final TermVar [] vars = query.makeVars();

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 20 of 60

 final AbstractTerm queryTerm = query.makeQuery(vars);

 if ("search".equals(e.getActionCommand())) {

 /* execute the query and populate the results */

 pane.disableButtons();

 pane.startJob(() - > {

 query.listRows(vars, queryTerm);

 }, () - > {

 Object[][] rows = que ry.getRows();

 pane.setResult(colids, rows);

 });

The action listener also contains code to handle the debug button and exceptions. The de-
bug button should show the built query. An exception can happen when the end-user enters
a wrongly formatted value as a number search criterion. We use a Swing option pane to dis-
play the built query or to display an eventual exception. The details of the corresponding
code can be found in the appendix.

3.5 Example Uses
The default look and feel varies with the used platform. We need a running window manager
to run the standalone application. We will directly jump to the Unicode query example. We
were not able to accomplish the search in the terminal application. The search should easily
be possible in the standalone application. The input fields are able to receive Unicode val-
ues. These values can also be retrieved from the user interface panel and handed over to
the query interpreter. The result table should also be able to show Unicode:

Picture 4: Search Button with Unicode Criteria

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 21 of 60

The above screenshot shows the frame after having entered name criteria ‘Иванов’ [Iwanov]
and after pressing the search button. As can be seen the standalone application has no
problems with Unicode in the criteria and with Unicode in the result table. The terminal appli-
cation would have displayed the built query as well. On purpose we have shifted this func-
tionality into an alternative scenario for the standalone application. The end-user has to press
the debug button to see the built query. The result can be seen here:

Picture 5: Debug Button with Unicode Criteria

As can be seen the standalone application has no problems with Unicode in the built query.
Let’s now turn to issue of exceptions. We didn’t look at this issue in connection with the ter-
minal application. The terminal application would simply pass an exception outside of the
main method. And the Java virtual machine would then display the exception on the console.
The standalone application will instead show an alert dialog.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 22 of 60

4 Applet Deployment
In this method the application consists of a Swing applet. The application will again interact
with the end-user via the graphic widgets, but this time from within the browser.

¶ Applet Component: The applet component displays the user interface pane in a
HTML page. It is also again the mediator between the pane and the query interpreter.

¶ HTML Page: The HTML page will only have a title and the applet. In the applet tag
we need to specify the Jekejeke Prolog runtime as an archive.

¶ Example Uses: The Java applet can be used when we place it on a server. Because
of the sandbox the Java applet runs in, we cannot use the clipboard.

4.1 Applet Component
Our point of departure is the same execution flow as for the standalone frame. The only dif-
ference is that we don’t have a window that we need to show upon initialization. The browser
will manage the applet and bring it to view. Therefore our applet component will not have a
main method. On the other hand the applet component will also have a constructor. This
constructor will be used by the browser. Therefore it needs to be public. We will again do the
initialization of the knowledgebase and the pane at this moment:

 /**

 * <p>Setup the knowledgebase and init the pane.</p>

 */

 public Applet() {

 /* init the pane */

 pane.initPane(getRootPane(), this);

 /* load the Prolog */

 pane.startJob(() - > {

 initKnowledgebase();

 }, new Runnable() {

 public void run() {

 }

 });

 }

Since there is no window, we also don’t need to set a title or the default close operation. Re-
moving the applet is managed by the browser. The applet component also provides an action
listener. This action listener implements exactly the same logic as the action listener of the
standalone frame. We did not go into lengths factoring out this logic into a separate object.
As a result the action listener code for the applet component is a copy/paste of the action
listener code from the standalone frame. More details are found in the appendix.

4.2 HTML Page
The HTML page will only have a title and the applet. In the applet tag we need to specify the
Jekejeke Prolog runtime as an archive. We need also to specify the applet component as an
entry point and we can specify the dimension of the applet. Inside the begin tag and the end
tag of the applet we can specify further HTML code. This HTML code is only rendered when
the applet could not be loaded. In summary our applet tag looks as follows:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 23 of 60

<applet

 archive="interpreter.jar,hello.jar"

 code="example03.Applet"

 width="450"

 height="390">

Applet could not be loaded.

</applet>

The full HTML page is found in the appendix. To run the HTML page we need to install a
browser. Since the HTML page contains an applet tag, we need also to install a Java applet
plugin. Most of the Java applet plugins that require a local JVM are since 2015 discontinued.
An interesting alternative is CheerpJ which provides a Java applet plugin which does on the
fly Java byte code to JavaScript translation.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 24 of 60

4.3 Example Uses
To run the applet we need a server. The problem is that an applet runs in a sandbox. When
running locally the sandbox does not grant enough rights so as that it can navigate to all the
resources it needs. For CheerpJ the result is, that the Java applet plugin doesn't allow to opt-
in to run it. On the other hand, if the applet page is place on a web server, there is no prob-
lem to run the applet as of 2018:

Picture 6: Applet with Search Results

The Java applet can be used when we place it on a server. The sandbox will then prevent
accessing the global clipboard. This makes it difficult to run our Unicode search. We cannot
copy/paste the Unicode criteria from outside of the applet. We have to type them manually.
On the other hand, changing the input language in the environment and/or using a screen
keyboard utility does work with CheerpJ.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 25 of 60

5 Servlet Deployment
In this method the application consists of a Java server page. As a benefit the browser histo-
ry can be used.

¶ Execution Flow: We give an overview of the components and the execution flow that
we will use in the solution. Some components will later be reused.

¶ Data Holder: The data holder is the container for the knowledge base. The
knowledge base is loaded once and shared across servlet requests.

¶ HTML Page: This page makes also use of the query interpreter and lists the data
from the server. But additionally in provides an input form for the search criteria.

¶ Web XML: The web application configuration file is used to define the web context.
We simply give the web application a name.

¶ Example Uses: To run the application a web server and a browser needs to be in-
voked. The application looks nearly the same as the standalone application.

5.1 Execution Flow
We give an overview of the components and the execution flow that we will use in the solu-
tion. Some components will later be reused. In particular the data holder and the plain page
will be reused by the next application. The plain page will play the role of a web service for
the next application. The plain page will be used unchanged for the web service and it will
thus also make use of the data holder.

We envision a simpler functionality than the one provided by the previous applications. We
will not show the dynamically built Prolog query to the end user. This will save us one button.
The only button that we will implement is the search button. So basically we only implement
the main scenario of the standalone application. But this is not quite true. We will introduce
some variation in the setup scheme.

For all the previous applications the setup of the knowledge base was done as part of initial-
izing the user interface. For the terminal application the setup was made close to preparing
the terminal reader. For the standalone application and the applet application the setup was
done as part of initializing the graphical user interface component. Now when we turn to a
servlet we do not have this possibility. The web server that will run the servlet might even be
headless and it is accessed by a physically distinct browser.

Our idea here is that during the first request to the servlet the knowledge base will be setup.
If something goes wrong during the setup, the first request to the servlet will see an error
message. In practical situation one might prefer another solution, for example initializing the
knowledge base on start-up of the web context and logging problems to a file. Such solutions
are also possible, but they are less simple. Therefore we went for the deferred setup by the
servlet itself:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 26 of 60

Query
4) make

1) criteria

5) list

Form

6) results

2) search

Data

3) init

Browser Web Server

Form HTTP

HTML

Picture 7: Servlet Application Flow

The above diagram shows the modified main flow. We see a new component Data which is
responsible for caching the knowledge base. This component is also responsible for setting
up the knowledge base the first time the knowledge base is demanded. It should also be
noted that the servlet is only active as long as the end-user has issued a search. When the
search results have been produced, the servlet is ready for another request. In summary the
application flow will work as follows:

Main Scenario:

1. The end-user enters search criteria in the browser.

2. The end-user presses the search button in the browser.

3. The HTML servlet lets the data holder provide the data.

4. The HTML servlet lets the query interpreter build the query.

5. The HTML servlet lets the query interpreter execute the query.

6. The browser shows the result to the end-user.

Alternative Scenario:

3a.1. The data holder has not yet initialized its data.

3a.2. The data holder sets up the Prolog runtime.

3a.3. The data holder consults the Prolog code.

3a.4. The flow continues with step 4.

We used an alternative scenario to wrap the requirement that the knowledge base need only
be setup once. Again what this technically means is not clear from the execution flow alone.
In the following we will walk through the code of the servlet solution. Various details that we
have not said in the execution flow will pop up in the actual code.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 27 of 60

5.2 Data Holder
The data holder is the container for the knowledge base. The knowledge base is loaded once
and shared across servlet requests. To hold the knowledge base we use a class variable.
This works fine since each web context has its own class loader and therefore its own class
data. The needed business logic for accessing the holder can be read off from the execution
flow. It basically follows the cached value pattern:

 /**

 * <p>If necessary do set up of the knowledge base.</p>

 */

 public synchronized static void initKnowledgebase() {

 if (know != null)

 return ;

 try {

 know = new Knowledgebase(ToolkitLibrary.DEFAULT, Data.class);

 /* setup the Prolog runtime */

 Interpreter inter = know.iterable();

 Knowledgebase.initKnowledgebase(inter);

 /* load the Prolog c ode */

 Object consultGoal = inter.parseTerm(

 "consult(library(example01/table))");

 inter.iterator(consultGoal).next().close();

 } catch (InterpreterMessage x) {

 throw new RuntimeException(x) ;

 } catch (InterpreterException x) {

 throw new RuntimeException(x);

 }

 }

The servlet application will allow concurrent requests. When the cached value pattern is con-
currently executed by multiple threads either incompletely loaded knowledge bases could be
returned or knowledge bases could be loaded twice. Our solution here is very simple. We
protected the method by the synchronized keyword. The Java compiler will then create code
so that the method body is synchronized to the data holder class. As a result only one thread
at a time will be able to execute the method body.

It is well known that web servers are vulnerable to a couple of threads. All the 5 top vulnera-
bilities listed by Symantec are based on poor application design and/or web server settings.
Half of the top vulnerabilities are based non-sanitized strings. Each component of a web
server might have its own string coding conventions and neglecting necessary conversions
can have drastic consequences. In our example we will deal with the coding of text inside
URL requests and with the coding of plain text inside XML.

The URL encoding and decoding of form data is practically done for us by the browser and
the web server. For the coding of plain text inside XML there is no standard helper available.
Before we went into the lengths of using a commons library we have coded our own XML
codeing library. Prolog access is provided via the module library(system/xml). The XML en-
coding can also be directly accessed from within Java by using the Java class matu-
la.util.system.ForeignXml and its static methods.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 28 of 60

5.3 HTML Page
We use the technology of Java server pages for the dynamic pages. This page makes use of
the query interpreter and shows the form and table from the server. As a first step in the de-
velopment of the dynamic pages we made sure that we can work with Unicode. For this pur-
pose the JSP page includes a @page contentType directive so that the response is generat-
ed in UTF-8. We will do our processing of a request without any sessions. Therefore we also
use a @page session directive with the value false:

<%@page session="false"%><%@page contentType="text/ html ; charset=UTF - 8"%>

The subsequent doc type tag informs the browser about the used HTML version. The title tag
gives a title to the page. Everything in a dynamic page that is between <% and %> is only
processed on the server side and not seen at the client side. So after the HTML page gener-
ation the only trace of our use of an UTF-8 encoding will be found in the http-equiv meta-tag.
The page becomes self-contained concerning the encoding information.

<!DOCTYPE HTML PUBLIC " - //W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

 <meta content="text/html; charset=UTF - 8" http - equiv="content - type">

 <title>Deployment Study - Servlet</title>

</head>

The HTML page has two different invocations. The first time the HTML page is invoked with-
out parameters. The second time when the form has been filled it is invoked with the form
field values submitted. The HTML page thus starts with conditionally reading off the parame-
ters. The JSP page also includes a setCharacterEncoding() invocation so that a request in
UTF-8 can be processed:

<%

 request.setCharacterEncoding("UTF - 8");

 String firstname;

 String name;

 String agefrom;

 String ageto;

 String salaryfrom;

 String salaryto;

 if (request.getParameter("search") != null) {

 firstname = request.getParameter("firstname");

 name = request.getParameter("name");

 agefrom = request.getParameter("agefrom");

 ageto = request.getParameter("ageto");

 salaryfrom = request.getParameter("salaryfrom");

 salaryto = request.getParameter("salaryto");

The generation of the HTML includes two parts. For the first responsibility of letting the end-
user specify the search criteria, we will generate a form. This form basically consists of input
fields for the search criteria. Similar to the terminal application and the standalone application
we will use strings. Since these strings are now generated together with HTML of the form,
we need to XML escape them to prevent cross side scripting. Here is an excerpt how the
input fields for the name criteria and part of the age criteria are generated:

 <tr>

 <td>Name:</td>

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 29 of 60

 <td colspan="4"><input name="name" type="text" size="12"

 value="<% = matula.util.system.ForeignXml.sysTextEscape (name)%>"></td>

 </tr>

 <tr>

 <td>Age:</td>

 <td>From:</td>

 <td><input style="text - align: right;" name="agefrom"

 type="text" size="3"

 value="<%= matula.util.system.ForeignXml.s ysTextEscape (agefrom)%>"></td>

For the second responsibility of providing the query results to the end-user, we will generate
a table. For this purpose the HTML page uses the data holder and the query interpreter. The
sequence for the initialization thus first calls the data holder to initialize the knowledge base if
necessary. It then retrieves the knowledge base from the class variable of the data holder.
The table is only generated when parameters have been provided:

 if (request.getParameter("search") != null) {

 try {

 jekpro.study.deployment.Data.initKnowledgebase();

 jekpro.study.deployment.Query query =

 new jekpro.study.deployment.Query(

 jekpro.study.deploy ment.Data. know);

The column headings of the table are now easily generated from the column identifiers re-
turned by the query interpreter. The data cells of the table are then generated by iterating
through the result rows. For number columns the data cell will be right aligned. String col-
umns will receive the default left alignment of a data cell. The column headings and the data
cells are both XML escaped:

<tr><%

 for (int i = 00; i < cols.length; i++) {

%><th><%=matula.util.system.ForeignXml. sysTextEscape (cols[i])%></th><%

 }

%></tr><%

 for (int j = 0; j < rows.length; j++) {

%><tr><%

 Object[] row = rows[j];

 for (int i = 0; i < row.length; i++) {

 if (cols[i]. endsWith("#")) {

%><td align="right"><%= matula.util.system.ForeignXml.sysTextEscape (

 row[i].toString())%></td><%

 } else {

%><td><%=matula.util.system.ForeignXml.sysTextEscape (

 row[i].toString())%></td><%

 }

 }

%></tr>

In XML escaping the column headings and the data cells we are overcautious here. We
could argue that we know our data, and that XML escaping is not necessary since we know
that our data does not contain XML sensitive characters. This might hold for the moment but
in the long run the data could change. So when we do the coding already now we don’t have
to do it later. And we can use XML sensitive characters any time in the data.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 30 of 60

5.4 Web XML
The web application configuration file is used to define the web context. We simply give the
web application a name. We didn’t find any causes to put more information into this configu-
ration file. The used configuration file can be found in the appendix. It happened that all of
the dynamic pages were running without any further information. But it could be that other
web servers require some information here or that some further configuration could be desir-
able. We will not dwell into more details here.

 <display - name>Deployment Study - Servlet</display - name>

 <descrip tion>

 The Web Application Deployment descriptor for the Java servlets.

 Copyright 2011 - 2018 , XLOG Technologies GmbH, Switzerland

 Jekejeke Prolog 1. 3. 0 (a fast and small prolog interpreter)

 </description>

5.5 Example Uses
To run the application a web server and a browser needs to be invoked. The application
looks nearly the same as the standalone application. When we invoke the HTML page by an
URL without parameters, we will first see a blank input form but no search results yet. We did
not observe any Problems in entering a Unicode search criteria. After pressing the search
button the HTML page reappears with the search results. The search criteria are also shown
again so that they can be modified and a new search can be issued:

Picture 8: HTML Page Unicode Search

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 31 of 60

6 Client Deployment
In this method the application consists of a graphical user interface that communicates with
the Java server page.

¶ Prolog Agent: We will use a Prolog predicate to access the Java server page. Ac-
cessing the Java server is done via the built-in streams.

¶ Execution Flow: We give an overview of the components and the execution flow that
we will use in the solution.

¶ Service Page: We use the technology of Java server pages for the dynamic pages.
This page makes use of the query interpreter and lists the data from the server.

¶ Interpreter Stub: The solution will replace the query interpreter by a stub. This stub
will invoke the Prolog agent.

¶ Client Frame: The client frame displays the user interface pane in a window. It is also
the mediator between the pane and the interpreter stub.

¶ Example Uses: The client application can be run without a browser but it will never-
theless retrieve the data from the remote server.

6.1 Prolog Agent
We will use a Prolog predicate to access the Java server page. Accessing the Java server is
done via the built-in streams. The Jekejeke Prolog built-in streams are able to access any
URL as long as the corresponding protocol is registered in the Java system. This means that
a Prolog application can open ftp:, http: and https: conversations. For the client application
we will open a http: conversation to the servlet application.

The corresponding Prolog code will first built a get URL by assembling the web context URL,
the target page and the search criteria. This is done inside the Prolog agent by using
atom_concat/3 and url_encode_utf8/2. The atom concatenation is a Prolog predicate already
defined in the ISO core standard and available as a built-in in Jekejeke Prolog. The URL
UTF-8 encoding is a Java foreign predicate that we dynamically register with the knowledge
base. The corresponding code reads as follows:

: - foreign(encode_parameter /2, ' Stub', encodeParameter ('String')).

act (F, N, AF, AT, SF, ST, R) : -

 encode_parameter (F, F8),

 atom_concat('<url> / example05/ service .jsp?firstname=', F8, A1),

 atom_concat(A1, '&name=', A2),

 encode_parameter (N,N8), atom_concat(A2, N8, A3),

 atom_concat(A3, '&agefrom=', A4),

 encode_parameter (AF,AF8), atom_concat(A4, AF8, A5),

 atom_concat(A5, '&ageto=', A6),

 encode_parameter (AT,AT8), atom_concat(A6, AT8, A7),

 atom_concat(A7, '&salaryfrom=', A8),

 encode_parameter (SF,SF8), atom_concat(A8, SF8, A9),

 atom_concat(A9, '&salaryto= ',A10),

 encode_parameter (ST, ST8), atom_concat(A10, ST8, A11),

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 32 of 60

As can be seen the static method for the Java foreign predicate is defined in the interpreter
stub. We will explain it below when the interpreter stub class is discussed. The code above is
incomplete. Before using the above code the <url> has to point to the servlet application.
After the above steps the variable A11 will hold the assembled URL. As a next step we will
open a stream, fetch the data and close the stream. To protect this sequence we use the
setup_call_cleanup/3 system predicate:

 setup_call_cleanup (open(A11, read, S),

 fetch(S, R),

 close(S)).

fetch(S,R) : - repeat, read(S, T),

 (T = end_of_file, !, fail;

 T = exception(E), throw(error(

 resource_error(service_exception,E) , _));

 T = R).

The predicate fetch/2 implements a backtracking loop via the built-in predicate repeat/1. Dur-
ing each redo a new Prolog term is read from the stream. The Prolog term is examined and
depending on its form different actions are taken. When the server response ends with an
end of file, the read/2 predicate will return the atom end_of_file. The action taken is then that
the predicate fetch/2 fails. When the server response is an exception term, the action taken
is that the predicate fetch/2 throws an exception. In all other cases the predicate fetch/2 suc-
ceeds when the fact returned by the server unifies with the second argument.

We can test the Prolog agent in the development environment. Before doing some testing it
is important to setup the development environment so that it includes the Stub class in the
class path. After having consulted the Prolog text of the agent we can then query the act/7
predicate. The simplest query sets all the search criteria to blank. The server will then return
all employee/4 facts. For each fact one solution is generated which we can explore via back-
tracking. The first invocation will take a little bit more time since the server will first load its
table data:

?- [example05/agent].

Yes

?- act ('','','','','','',X).

X = employee('ʉʝʨʛʝʡ', 'ʀʚʘʥʦʚ', 53, 18500) ;

X = employee('ʉʝʨʛʝʡ', 'ɹʝʣʷʝʚ', 53, 19000) ;

X = employee('Hans', 'Fischer', 6 2, 21500) ;

...

The setup_call_cleanup/3 system predicate will see to it that the execution of the closing of
the stream is guaranteed when the search finishes or when the search is terminated. There-
fore there is no harm when an exception occurs during the search or when the search is
manually terminated. The stream will always be properly closed.

6.2 Execution Flow
We give an overview of the components and the execution flow that we will use in the solu-
tion. Since this is the last example in this report, there is no subsequent potential reuse of
some of the components of the solution. On the other hand the solution makes use of some
previously defined components. Namely we will make use of a service page. This service
page is built with the same technology that has been used for the HTML page.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 33 of 60

We basically envision the same flow as the standalone application. But when it comes to
dynamically building the query and executing the query the application will behave differently.
Instead of querying the query interpreter we will query the interpreter stub. The interpreter
stub will generate a query for the Prolog agent, which will in turn delegate the query execu-
tion to the web server and retrieve the results from there. Under the hood typically the HTTP
protocol will be used to access the web server.

Query
6) make

3) criteria

7) list

Client

8) results

4) search

Data

5) init

Swing Web Server

Service HTTP

Text

Picture 9: Client Application Search Flow

The above diagram shows the main flow of the client application. We see the new client
component and the new stub component. The client component mediates between the user
interface pane and the stub. The diagram is not complete. It does not show the flow inside
the dynamic service page. We might point to any dynamic service page that can cooperate
with the protocol of the Prolog agent. Our current implementation of the service page uses a
flow similar to a flow of the HTML page.

Main Scenario:

1. The client application sets up the Prolog runtime.

2. The client application consults the Prolog code.

3. The end-user enters search criteria in the user interface panel.

4. The end-user presses the search button in the user interface panel.

5. The text servlet lets the data holder provide the data.

6. The text servlet lets the query interpreter build the query.

7. The text servlet lets the query interpreter execute the query.

8. The user interface panel shows the result to the end-user.

9. The flow continues with step 3.

The protocol of the Prolog agent is not very flexible. It assumes a predefined set of search
criteria. The names of the search criteria cannot vary. Also the column identifications are
currently not retrieved from the web server but statically returned by the interpreter stub. Be-
cause of lack of space we have opted for such a simplistic solution.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 34 of 60

It should also be noted that the example is still a toy example and it is not designed for prac-
tical use on the internet. Assume the salary figures were real, one would not want that this
data is publicity available on the internet. Real world applications would demand encryption,
authentication, authorization and auditing. Further if the application does updates some
transaction management would be advantageous.

6.3 Service Page
This page makes also use of the query interpreter and lists the data from the server. For this
purpose we provide a service page. This service page is built similarly to the HTML page. It
also contains a header with some page directives. In addition, it also includes the access of
the page parameters and the setup of the data holder and the query object. We do not repeat
the details here and the interested reader might consult the appendix for more information.

The service page will be accessed by our Prolog open/3 built-in. This built-in does URL nor-
malization and uses a HEAD access to the server for this purpose. We are currently working
on a solution that skips URL normalization and does only a GET, but this improvement is not
yet available by us. To avoid initiating a long running job on the server we will check the re-
quest method and in case of a HEAD access we will do nothing.

 String method = request.getMethod();

 if ("HEAD".equals(method))

 return ;

To deliver the employee/4 facts in Prolog notation we do not generate them piece wise in the
service page. Instead we rebuild the employee/4 facts and then invoke the Prolog un-parser.
Rebuilding the employee/4 facts does not fill the heap, since we will do it in a loop. The cor-
responding objects are short lived and will be quickly reclaimed by Java. When rebuilding the
employee/4 facts we simply use the rows form the query result and assume that they are
already in the correct argument order for the TermCompound constructor:

 for (int j = 0; j < rows.length; j++) {

 Object[] args = rows[j];

%><%=new jekpro.tools.term.TermCompound("employee", args).toString(

 jekpro.tools.call.Interpreter.FLAG_QUOTED)%>.

<%

 }

Using the Prolog un-parse will assure that atoms are correctly quoted and escaped, and that
spaces and parenthesis are set necessary. The invocation of the Prolog un-parse happens
between the <%= and %>. This kind of snippet evaluates the given expression and places
the result in the output. In our situation the expression creates the employee/4 compound
and thus results in a Term. When a non-primitive type is placed in the output its toString()
method is invoked. The toString() method of a Term does a Prolog un-parse.

We have also incorporated exception handling into the service page. An exception might not
only be thrown when something goes wrong with the query building or query execution. An
exception might also be thrown when there is a problem with setting up the knowledge base
the first time. We have decided to return an exception/1 Prolog fact in case an exception oc-
curs. The fact is also generated by a Prolog un-parse. More details about the exception han-
dling can be found in the appendix.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 35 of 60

6.4 Interpreter Stub
The solution will replace the query interpreter by a stub. This stub will invoke the Prolog
agent. We might ask why we invoke the Prolog agent here and do not directly go to the web
server. This could be archive solely from within Java by for example using the URL class.
The reason is simple, we want to show with this example how Prolog code could be used on
the client side. Jekejeke Prolog has built-in support for streams that are opened via an URL.
In the current case this is enough to implement a Prolog agent.

The interpreter stub has thus the simple responsibility of invoking the Prolog agent. We have
already manually invoked the Prolog agent from development environment for testing pur-
poses. The interpreter stub will generate the exact same query we have already seen. The
interface between the client and the interpreter stub will be the same as between the
standalone and the query interpreter. The Prolog text of the Prolog agent will be consulted in
the method initKnowledgebase(). The query with the given functor will then be dynamically
built by the method makeQuery().The corresponding code reads as follows:

 /**

 * <p>Create the query term.</p>

 *

 * @param vars The query variables.

 * @return The query term.

 */

 public AbstractTerm makeQuery(Term Var [] vars) {

 Object [] args = new Object [7];

 args[0] = firstname;

 args[1] = name;

 args[2] = agefrom;

 args[3] = ageto;

 args[4] = salaryfrom;

 args[5] = salaryto;

 args[6] = new Ter mCompound(inter, "employee",

 vars[COLUMN_FIRSTNAME], vars[COLUMN_NAME],

 vars[COLUMN_AGE], vars[COLUMN_SALARY]);

 return new TermCompound(inter, functor, args);

 }

As can be seen the above code will generate a query which consists of a single predicate
invocation. The implementation of the rest of the interface parallels the implementation of the
query interpreter. More details are found in the appendix. We have also placed the Java
method for the encode_parameter/2 foreign predicate in the interpreter stub. The method is
static, since currently we can only declare static Java methods as foreign predicates. The
method has a String return type since it directly returns the result:

 /**

 * <p>Java foreign p redicate to encode a parameter.</p>

 *

 * @param s The paremeter.

 * @return The encoded paremeter.

 */

 public static String encodeParameter(String s) {

 return ForeignUri.encode(s, false,

 ForeignUri.NEEDS_COMP, ForeignUri.ENCODING_UTF8);

 }

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 36 of 60

As can be seen our Java foreign function interface does allow a lot of automatism. One au-
tomatism is the checking and conversion of input parameters. A second automatism is that
output parameters and exceptions are also mapped. The Prolog Java interface allows for
extension of the Prolog system. So instead of using the already defined open/3 predicate, we
could also provide new built-ins for socket communication that match another web server
and let the Prolog agent use these means. More information about the Prolog Java interface
can be found in the programming interface documentation.

6.5 Client Frame
The client frame displays the user interface pane in a window. It is also the mediator between
the pane and the interpreter stub. There is not much to say about the implementation of the
client frame. It mirrors the implementation of the standalone frame. The Java class has just a
different name, but repertoire of methods is the same. The only difference is that the client
frame makes use of the interpreter stub instead of the query interpreter. This is already seen
in the initialization, which starts as follows:

 /**

 * <p>Setup the knowledgebase and init the pane.</p>

 */

 private Client() {

 /* init the pane */

 pane.initPane(getRootPane(), this);

 setTitle("Deployment Study - Client");

 setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

 /* load t he Prolog */

 pane.startJob(() - > {

 initKnowledgebase();

 }, new Runnable() {

 public void run() {

 }

 });

We also equipped the user interface panel of the client frame with a progress bar. The man-
agement of the Swing GUI progress bar is done by the method startJob(). The rest of the
code is an analogue adaption. The full code can be found in the appendix. We could have
added an input field to the client frame, so that the end-user can specify the URL of the de-
sired web server. For simplicity we did not do so. Currently this has to be changed in the
Prolog text of the agent.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 37 of 60

6.6 Example Uses
We started our testing with running the service page. Browsers usually allow manually speci-
fying an URL. We noticed that our browser did not have problems in accepting and submit-
ting an UTF-8 encoded URL with parameters. The resulting employee/4 facts of the search
for the name ‘Иванов’ [Iwanov] can be seen here. There seems also to be no problem in
displaying the UTF-8 encoded service page:

Picture 10: Service Page Unicode Search

The client application can be run without a browser but it will nevertheless retrieve the data
from the remote server. We will directly head towards testing the behaviour of Unicode que-
ries. Compared to the servlet example where we used a browser, the Unicode has now to
travel back and forth through the client application. It will pass the user interface pane, the
interpreter stub and the Prolog agent. It seems that everything works fine. The result of the
search for the name ‘Иванов’ [Iwanov] in the client frame can be seen here:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 38 of 60

Picture 11: Client Frame Unicode Search

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 39 of 60

7 Database Deployment
In this method the application consists of a graphical user interface that communicates with a
JDBC database.

¶ Prolog Driver: We will use a Prolog predicate to access the JDBC database. Access-
ing the JDBC database is done via some do-it yourself foreign predicates.

¶ StatementAPI: This class provides the Java methods for the do-it yourself foreign
predicates. We will use our reference data type to work with statement objects.

¶ Database Frame: The database frame uses the same execution flow as the client
frame. Except that we exchanged the Prolog agent for the Prolog driver.

¶ Example Uses: To run the application the JDBC database needs to be invoked. The
application will access the data from the remote JDBC database.

7.1 Prolog Driver
We will use a Prolog predicate to access the JDBC database. Accessing the JDBC database
is done via some do-it yourself foreign predicates. Currently there are no Jekejeke Prolog
built-ins to access a JDBC database. But Jekejeke Prolog provides an application program-
ming interface. We have used this interface to provide a couple of Java foreign predicates
that allow us to access a JDBC database.

The Prolog code will first built a SELECT statement by assembling WHERE conditions ac-
cording to the given search criteria. The conditions are first accumulated in a list. A single
string respective number condition is added to the list via the predicates str_cond/2 respec-
tively num_cond/2. String conditions will need an encoding of the string into an SQL literal.
The SQL literal encoding rule is specific to the used database management. We provided the
Java foreign predicate literal_encode/2 for that purpose:

: - foreign(literal_encode/2, 'StatementAPI', literalEncode('String')).

% str_cond(+String, +ColumnOperator , +WhereList , - WhereList).

str_cond('' , _, W, W) : - !.

str_cond(L , CO, W, [COE|W]) : -

 literal_encode(L , E),

 atom_concat(CO , E, COE).

% num_cond(+Number , +ColumnOperator , +WhereList , - WhereList).

num_cond('' , _, W, W) : - !.

num_cond(N , CO, W, [CON|W]) : -

 atom_concat(CO , N, CON).

There is also a predicate make_where/2 which will assemble the final WHERE clause from
the WHERE conditions. More details are given in the appendix. The foreign predicates for
accessing the JDBC database are based on SQL. The implementation makes use of a driver
instance which is specific to the used database management system. The interface is very
minimal and only allows access to the database querying language (DQL). There is no sup-
port for the database manipulation language (DML) or the database definition language
(DDL). The corresponding declaration of the Java foreign predicates reads as follows:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 40 of 60

: - foreign(create_statement/1, 'StatementAPI', createStatement).

: - foreign(execute_query/3, 'StatementAPI',

 executeQuery('CallOut', 'Statement' , 'String')).

: - foreign(close_statement/1, 'StatementAPI', closeStatement('Statement')).

The drive/7 predicate is then straight forward. It will first build the WHERE clause and then
prepend it with the SELECT clause and the FROM clause. As a next step we will open a
statement object, execute the query and close the statement object. The predicate to exe-
cute the query is redo-able and it will successively return result tuples. To protect this se-
quence we will use again the setup_call_cleanup/3 system predicate. The full code for the
drive/7 predicate can be found in the appendix:

 [...]

 atom_concat('SELECT * FROM employee' , W, Q),

 setup_call_cleanup(create_statement(S),

 execute_query(S , Q, [X,Y,Z,T]),

 close_statement(S)).

We can again test the Prolog driver in the development environment. Before doing some
testing it is important to setup the development environment so that it includes both the
StatementAPI class and the SQL Driver class in the class path. After having consulted the
Prolog text of the driver we can then query the drive/7 predicate. The simplest query sets all
the search criteria to blank. The JDBC database will then return all employee/4 facts.

?- [example06/ driver].

Yes

?- drive ('','','','','','',X).

X = employee('ʉʝʨʛʝʡ', 'ʀʚʘʥʦʚ', 53, 18500) ;

X = employee('ʉʝʨʛʝʡ', 'ɹʝʣʷʝʚ', 53, 19000) ;

X = employee('Hans', 'Fischer', 62, 21500) ;

...

7.2 Statement API
This class provides the Java methods for the do-it yourself foreign predicates. We will use
our reference data type to work with statement objects. The JDBC statement object is creat-
ed by the predicate create_statement/1. The predicate will return a reference term to a new
statement object. The predicate execute_query/3 is then responsible for executing a query
and retrieving result tuples. The predicate close_statement/1 allows closing the statement
object. The Java methods for the foreign predicates have been defined as follows:

import jekpro.tools. call.InterpreterMessage ;

import java.sql.*;

import java.util.Properties;

public class StatementAPI {

 public static Statement createStatement()

 throws InterpreterMessage;

 public static Object executeQuery(CallOut co,

 Statement obj , String select)

 throws InterpreterMessage;

 public static void closeStatement(Statement obj)

 throws InterpreterMessage;

}

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 41 of 60

We decided to statically allocate the SQL driver and the connection credentials in the State-
mentAPI class. We also hardwired the user name, the password and JDBC connection URL.
To run the example the “xxx” strings have to be replaced by the parameters at hand. In prac-
tice one could use a more flexible solution where the driver class and the connection param-
eters would be configurable. There are a couple of APIs and products around that provide
this functionality, but for the sake of simplicity we show here a static solution:

 private final static Properties info = new Properties();

 private final static Driver driver;

 static {

 try {

 info.put("user", "xxx");

 info.put("password", "xxx");

 Class<?> clazz = Class.forName(" xxx ");

 driver = (Driver) clazz.newInstance();

 } catch (ClassNotFoundException x) {

 throw new RuntimeException(x);

 } catch (InstantiationException x) {

 throw new RuntimeException(x);

 } catch (IllegalAccessException x) {

 throw new RuntimeException(x);

 }

 }

The Java method executeQuery implements a non-deterministic predicate. For more details
on implementing non-deterministic predicates via Java methods see the programming inter-
face documentation of the runtime library. One row will be returned in the form of a Prolog
list. Upon redo further rows are fetched. The Prolog list is dynamically built. The Prolog type
of the column values is inferred from the Java type returned by the JDBC interface. In prac-
tice one could implement a more complex mapping:

 ResultSetMetaData meta = set.getMetaData();

 Object valList = Knowledgebase.OP_NIL ;

 for (int i = meta.getColumnCount(); i >= 1; i --) {

 Object col = set.getObject(i);

 Object val;

 if (col instanceof String) {

 val = col ;

 } else if (col instanceof I nteger) {

 val = col ;

 } else {

 throw new InterpreterMessage(

 InterpreterMessage.representationError(OP_SQL_STATEMENT));

 }

 valList = new TermCompound(Knowledgebase.OP_CONS,

 val, valList);

 }

The statement object basically encapsulates an SQL cursor factory. Whether this cursor
does some prefetching depends on the configuration of the JDBC driver and the database
management system at hand. In our approach we also allocate one database connection per
SQL statement. Most JDBC drivers and database management systems would allow for the
creation of multiple and thus concurrent SQL statement over the same database connection.
We didn’t make use of this feature here.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 42 of 60

When statement object is not anymore needed it will be returned via the Java method
closeStatement(). This method will close the SQL statement, which in turn by the definition of
JDBC protocol will also close any pending SQL cursor on this statement. Since in our model
each SQL statement has one database connection associated and since we do not cache
database connections, we manually close the database connection as well:

 public static void closeStatement(Statement obj)

 throws InterpreterMessage {

 Connection con = null ;

 try {

 con = obj .getConnection();

 obj .close();

 con.close();

In practice one would also use a more flexible solution here. The creation of a database con-
nection is usually quite expensive in time and space. Therefore one would try to pool data-
base connections or to pre-allocate database connections. A database management system
might terminate an idle database connection at any time. Therefore any pooling would also
need a more clever detection of externally closed database connections and their reopening.
There are a couple of APIs and products around that would provide pooling.

7.3 Database Frame
The database frame uses the same execution flow as the client frame. Except that we ex-
changed the Prolog agent for the Prolog driver. Again there is not much to say about the im-
plementation of the database frame. It mirrors the implementation of the client frame. The
Java class has only a different name, but the repertoire of the methods is the same. The sole
difference is that that we consult the Prolog driver instead of the Prolog agent.

7.4 Example Uses
To run the application the JDBC database needs to be invoked. The application will access
the data from the remote JDBC database. To put data into the database the desired table
has first to be created and the types of the columns have to be specified. Our example needs
exactly one table. The table can be created with the following statement. The column type
NVARCHAR indicates that we desire to store national strings which can mean Unicode. Oth-
er database management systems might need a different declaration.

CREATE TABLE employee (

 firstname NVARCHAR(50) NOT NULL,

 name NVARCHAR(50) NOT NULL,

 age INTEGER NOT NULL,

 salary INTEGER NOT NULL);

To put data into the database we can individually insert rows. Our example needs an insert
statement for each employee tuple. Statements of the following form can be used. The N
before an SQL literal indicates that the literal is national encoded. Other database manage-
ment systems might need a different encoding of the SQL literal. After the schema has been
defined and the database has been populate, the database management systems needs to
be running and the JDBC connection port needs to be accessible.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 43 of 60

INSERT INTO employee (firstname , name, age , salary)

 VALUES (N'ʉʝʨʛʝʡ', N'ʀʚʘʥʦʚ', 53, 18500);

INSERT INTO employee (firstname , name, age , salary)

 VALUES (N'ʉʝʨʛʝʡ', N'ɹʝʣʷʝʚ', 53, 19000);

[é]

The database application can be run with the JDBC driver class in the class path. We will
again directly head towards testing the behaviour of Unicode queries. In the client application
the Unicode travelled a HTTP request and HTTP response. In the database application the
Unicode will travel the JDBC driver and the database management system. It seems that
everything works fine. The result of the search for the name ‘Иванов’ [Iwanov] in the data-
base frame can be seen here:

Picture 12: Database Frame Unicode Search

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 44 of 60

8 Mobile Deployment
In this method the application consists of a graphical user interface for a mobile device.

¶ Execution Flow: We give an overview of the components and the execution flow that
we will use in the solution.

¶ Activity Screens: We programmatically populate the activity screens and provide
call-backs for the intents.

¶ Progress Bar: While the knowledge base is loading or a query is processed we show
an indeterminate progress bar.

¶ Android Manifest: This configuration file catalogues the intents of the application
and defines the graphical appearance on the applications screen of the device.

¶ Example Uses: The mobile application can be run inside an emulator or a device.
The mobile application will be listed with icon and title.

8.1 Execution Flow
We give an overview of the components and the execution flow that we will use in the solu-
tion. As an implementation technology we will use Android technology. For Android we can
implement everything in Java. We do not directly reuse some components from the non-
Android version. Instead we have copied these components and re-implemented them with
fewer columns. This is to make the Android less voluminous.

Since screen space is rare on mobile devices, we envision a solution with two screens. The
first and last screen will be the results screen. In between a criterias screen will be shown
that allows the end-user to specify the search criterias. The flow between these two screens
is choreographed by the exchange of messages. These messages are realized as Android
intents. We use the predefined activity method signatures to implement call-backs that will
receive the messages inside the screens.

Results Query
9) make

3) criteria

10) list
11) results

1) search

Criterias

5) return
2) start

4) ok

Picture 13: Mobile Application Search Flow

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 45 of 60

The above diagram shows the main flow of the mobile application. The main application en-
try point is the results screen. The creation of this screen is left to the Android environment.
Typically the main application entry point screen will be created when the end-user clicks the
application icon from the applications screen of the device. The main scenario only covers
the sunshine case when the end-user really desires a results screen.

Main Scenario:

1. The mobile application sets up the Prolog runtime.

2. The mobile application consults the Prolog code.

3. The end-user presses the search button on the results screen.

4. The end-user enters search criterias in the criterias screen.

5. The end-user presses the Ok button on the criterias screen.

6. The mobile application lets the query interpreter build the query.

7. The mobile application lets the query interpreter execute the query.

8. The results screen shows the result to the end-user.

9. The flow continues with step 3.

The mobile deployment is very similar to the standalone deployment. With the standalone
deployment the mobile deployment shares the use of a GUI and the execution of a single
binary image. As long as there are enough memory resources the Android environment will
not remove the binary image from memory. A more advanced solution might detect that a
closed and reopened activity screen can reuse an already loaded knowledge base.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 46 of 60

8.2 Activity Screens
We programmatically populate the activity screens and provide call-backs for the intents.
Instead of programmatically populating the activity screens we could also inflate them from
an .xml file. Inflation has the advantage that the GUI can be easily changed without recompil-
ing the code. On the other hand programmatically populating the activity screens offers more
flexibility in dynamically defining layouts. In the following we use the habit of programmatical-
ly populating the activity screens, although this is not fully necessary.

The details of the code for the screens can be found in the appendix. We exemplarily show a
snippet from the population of the criterias screen. Population can be done in the onCreate()
call-back method of an activity. When using programmatically populated screens the views of
a screen can be directly referenced via the fields of the screen. We do not need to lookup
fields via identification numbers. The onCreate() call-back method will initialize those fields
such as text input fields and button fields:

 /**

 * <p>Called when the activity is first created.</p>

 */

 public void onCreate(Bundle bundle) {

 super .onCreate(bundle);

 TextView labelname = new TextView(this);

 labelname.setText("Name:");

 TableRow.LayoutParams layoutparams = new TableRow.LayoutParam s(

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 layoutparams.setMargins(0, 0, 12, 0);

 TableRow row = new TableRow(this);

 row.addView(labelname, layoutparams);

 name = new EditText(this);

 name.setWidth((int) (name.getPaint().measureText("#") * 10));

 name.setInputType(InputType.TYPE_CLASS_TEXT |

 InputType.TYPE_TEXT_FLAG_NO_SUGGESTIONS |

 InputType.TYPE_TEXT_VARIATION_VIS IBLE_PASSWORD);

 name.setImeOptions(0x1000000 | /* flagNoPersonalizedLearning */

 EditorInfo.IME_FLAG_NAVIGATE_NEXT |

 EditorInfo.IME_FLAG_NO_FULLSCREEN |

 EditorInfo.IME_ACTION_NEXT);

 name. setFocusable(true);

 layoutparams = new TableRow.LayoutParams(

 ViewGroup.LayoutParams.WRAP_CONTENT,

 ViewGroup.LayoutParams.WRAP_CONTENT);

 row.addView(name, layoutparams);

The search criterias screen will be invoked from the search results screen. It will allow the
end-user to specify search criterias and then return to the search results screen. The entered
search criterias have to be passed back to the search results screen. We use the intent with
results mechanism in the first place to invoke the results screen. We can then pass back the
search criterias by a new intent. The code for passing back the search criterias is found in
the handler for the buttons of the search criterias screen:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 47 of 60

 /**

 * <p>Button has been clicked.</p>

 *

 * @param view The button.

 */

 public void onClick(View view) {

 if (view == ok) {

 Intent intent = new Intent();

 intent.putExtra("name", name.getText().toString());

 intent.putExtra("fromage", fromage.getText().toString());

 intent.putExtra("toage", toage.getText().toString());

 setResult(RESULT_OK, intent);

 finish();

The search criterias will be picked up by the onActivityResult() call-back method of the
search results screen. As a first step we have to check whether the criteria screen was fin-
ished to return some results. If this is the case, the method will then request a knowledge
base from the data holder. As a next step the method will unpack the search criterias from
the intent and supply it to the query. Finally it will dynamically build a query and which can be
used to request the list of the result rows.

 /**

 * <p>Handle return from an intent.</p>

 *

 * @param request The request code.

 * @param result The result code.

 * @param data The data.

 */

 protected void onActivityResult(int request, int result, Intent data) {

 if (result != RESULT_OK)

 return ;

 Interpreter inter = know.iterable();

 final Query query = new Query(inter);

 query.setName(data.getStringExtra("name"));

 query.setAgeFrom(data.getStringExtra("fromage"));

 query.setAgeTo(data.getStringExtra("toage"));

 final String[] cols = query.listColumnIdentifiers();

 final TermVar[] vars = query.makeVars();

 final AbstractTerm goal = query.makeQuery(vars);

The results are later wrapped into an adapter. The adapter will define how each row is dis-
played in the list view of the search results screen. Our present implementation of the adapt-
er is quite flexible. It can react on changes in the number of columns returned by the query,
since it builds the row views based on the meta-information defined by the list of column
identifiers. The detailed code of the adapter can be found in the appendix. Instead of retriev-
ing all rows, we could also opt for a non-exhaustive solution. This would require a different
implementation of the query object as a cursor.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 48 of 60

8.3 Progress Bar
It should be noted that the Android toolkit provides as well a separate GUI thread to process
user interface interactions. Again it is not recommended to process long running jobs via this
thread. Even the Android OS will recognize the waiting and might ask the end-user whether
he wants to kill the mobile application. An unwanted behaviour.

To prevent such a behaviour we also provided a progress bar in the case of the mobile appli-
cation. The progress bar works very similar as the progress bar as the standalone applica-
tion. We also start the long running job as a simple thread in the background and then submit
a GUI event. Only the delivery method of the GUI event is different:

 /**

 * <p>Start a job.</p>

 *

 * @param job The long running job.

 * @param job2 The GUI update job.

 */

 private void startJob(final Runnable job, final Runnable job2) {

 new Thread((Runnable) () - > {

 job.run();

 root.post(() - > {

 job2.run();

 });

 }).start();

A further difference is found in the way on how we switch in the progress bar. The approach
is that we work with addView() and removeView(), and directly switch in the desired GUI
component. This requires more Java program code that uses the Android library. Testing so
far has showed that there is no problem with revalidation and repainting. Especially com-
pared to Swing there is no requirement of packing the activity.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 49 of 60

8.4 Android Manifest
This configuration file catalogues the intents of the application and defines the graphical ap-
pearance on the applications screen of the device. On the first level of the manifest files we
find declared properties of the downloadable package. An important declared property here
is the <uses-sdk> tag. Since we are about to build a package that makes use of the Jekejeke
Runtime API, we need to specify a minimal API Level of 8. This is the current non-headless
minimal API Level as documented in the installation notes of the Jekejeke Runtime.

<?xml version="1.0" encoding="utf - 8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package=" mobile.foo.bar "

 androi d:versionCode="1 010"

 android:versionName="1. 1. 0">

 <supports - screens android:largeScreens="true"

 android:xlargeScreens="true"/>

 <uses - sdk android:minSdkVersion="8"

 android:targetSdkVersion=" 28" />

 <! - - uses - feature android:name="com.sec.feature.spen_usp"

 android:required="true"/ -- >

On the next level we mention our application. Here we can define the label and the icon for
our application. The label and the icon will be seen on the applications screen of the device,
provided the application has a main activity:

 <application android:label="@string/deployandroid"

 android:icon="@drawable/deployandroid">

On the last level we mention our activities. Each activity is mentioned with its associated Ja-
va class. The main activity is marked by an intent filter with an appropriate action and catego-
ry. The non-main activity doesn’t need this filter:

 <activ ity android:name=" example07.Results "

 android:configChanges="

screenSize| mcc|mnc|locale|touchscreen|keyboard|keyboardHidden|navigation|sc

reenLayout|fontScale|uiMode|orientation"

 android:label="@string/deployandroid">

 <intent - filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

/>

 </intent - filter>

 </activity>

 <activity android:name=" example07.Criterias "

 android:configChanges="

screenSize|mcc|mnc|locale|touchscreen|keyboard|keyboardHidden|navigation|sc

reenLayout|fontScale|uiMode|orientation" >

 </activity>

We use a <supports-screens> tag in the manifest file. This is necessary since we go with a
higher version of Android. We then us the screenSize option in the android:configChanges
attribute in the main activity so that the application will be resizable by default. Since our ap-
plication does not use any custom views the resizing can be automatically carried out. Finally
the <uses-feature> tag would allow for upload in the Samsung store.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 50 of 60

8.5 Example Uses
The mobile application can be run inside an emulator or a device. The mobile application will
be listed with icon and title. After compiling the application and creating an Android package,
the application can be either installed on an emulator or on a device. After installing the an-
droid package an “Employee Search” icon should be shown on the applications screen.
Clicking the “Employee Search” icon will start the main activity:

Picture 14: Applications Screen

On the main activity we can press the “Search” button. We will then land in the criterias activ-
ity. We can there enter some criterias. And complete the specification of the search criterias
via the “Ok” button:

Picture 15: Search Criterias Activity

After the “Ok” button we will land again main activity. This time the main activity will show
some results in the list view. We can press again the “Search” button to perform a different
search. Or we can press the “Close” button to leave the main activity:

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 51 of 60

Picture 16: Search Results Activity

The screenshot shows that there is no immediate problem with 16-bit Unicode. The critical
path from the consulted file to the list view seems to work even when Unicode is involved.
The consulted file encodes Unicode via UTF-8, and the list view accepts strings which can
carry Unicode as UTF-16.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 52 of 60

9 Example Artefacts
In the following we give a short description of the artefacts. We also give more details about
compiling and executing the examples. The following examples are covered:

¶ Terminal Deployment

¶ Standalone Deployment

¶ Applet Deployment

¶ Servlet Deployment

¶ Client Deployment

¶ Database Deployment

¶ Mobile Deployment

This documentation does not contain the artefacts of the. A browsable version of the arte-
facts of the examples can be found on the following web site:

www.jekejeke.ch/idatab/doclet/repo/en/docs/05_run/08_deploy/package.jsp

The same code is also found on GitHub:

github.com/jburse/jekejeke-samples/tree/master/jekrun/deployment

github.com/jburse/jekejeke-samples/tree/master/jekrun/deployandroid

Further the artefacts are also bundled in the suprun.zip when downloading the Jekejeke
Prolog runtime library from the web site.

http://www.jekejeke.ch/idatab/doclet/repo/en/docs/05_run/08_deploy/package.jsp
http://github.com/jburse/jekejeke-samples/tree/master/jekrun/deployment
http://github.com/jburse/jekejeke-samples/tree/master/jekrun/deployandroid

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 53 of 60

9.1 Terminal Deployment
For the terminal example there are the following sources:

¶ Query.java: The Java class for the query interpreter.

¶ table.p: The Prolog text of the table.

¶ Terminal.java: The Java class for the terminal main class.

We have used the following directory layout for the sources (Query.java and Terminal.java),
the Prolog text (table.p) and the Jekejeke Prolog runtime library (interpreter.jar) during com-
pilation. The Jekejeke Prolog runtime library can be downloaded from the Jekejeke web site
(www.jekejeke.ch):

 example01

 +--- Query.java

 +--- table.p

 +--- Terminal.java

 WEB- INF

 +--- lib

 +--- interpreter.jar

The application can be compiled with the following command line on the windows platform.
On the Linux and Mac OS platform the backslash (\) directory separator needs to be re-
placed by the slash (/). The command needs to be put on one line and the single standing
backslashes (\) need to be removed so that the command can be issued:

 javac - sourcepath . \

 - cp WEB- INF \ lib \ interpreter.jar \

 - d WEB- INF \ classes \

 example01 \ Terminal.java

We have used the following directory layout for the byte code (Query.class and
Terminal.class), the Prolog text (table.p) and the Jekejeke Prolog runtime library (interpret-
er.jar) during execution. The byte code is automatically placed in the specified location by the
previous compilation command line. The Prolog text (table.p) possibly needs to be manually
copied to the class path:

 WEB- INF

 +--- classes

 | +--- example01

 | +--- Query.class

 | +--- table.p

 | +--- Terminal.class

 +--- lib

 +--- interpreter.jar

The terminal application can then be executed by the following command line on the win-
dows platform. On the Linux and Mac OS platform the semicolon (;) path separator needs to
be replaced by the colon (:):

 java - cp WEB- INF \ classes; WEB- INF \ lib \ interpreter .jar \

 example01 .Terminal

http://www.jekejeke.ch/

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 54 of 60

9.2 Standalone Deployment
For the standalone example there are the following additional sources:

¶ Pane.java: The Java class for the graphical user interface.

¶ Standalone.java: The Java class for the standalone frame.

We have used the following directory layout for the new Java sources (Pane.java and
Standalone.java). We also reuse some artefacts from the previous terminal example, but we
do not show them here:

 example01

example02

 +--- Pane.java

 +--- Standalone.java

The application can be compiled with the following command line on the windows platform.
The compilation is very similar to the compilation of the previous example. We only designate
another class as our entry point:

 javac - sourcepath . \

 - cp WEB- INF \ lib \ inte rpreter.jar \

 - d WEB- INF \ classes \

 example02 \ Standalone.java

We have used the following directory layout for the byte code (Pane.class and
Standalone.class). We also reuse the compile results from the previous example, but we do
not show them here:

 WEB- INF

 +--- classes

 +--- example01

 +--- example02

 +--- Pane.class

 +--- Standalone.class

The terminal application can then be executed by the following command line on the win-
dows platform. Again invoking the compile is very similar to the previous example. Once
more we only designate another class as our entry point:

 java - cp WEB- INF \ classes; WEB- INF \ lib \ interpreter.jar \

 example02 .Standalone

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 55 of 60

9.3 Applet Deployment
For the applet example there are the following additional sources:

¶ Applet.java: The Java class for the applet component.

¶ page.html: The static HTML page that includes the applet component.

We have use the following directory layout for the Java sources (Applet.java) and the applet
HTML page (page.html). We also reuse some artefacts from the previous terminal and
standalone example, but we do not show them here:

 example01

example02

example03

 +--- Applet .java

 +--- page . html

The compilation is done similar as for the previous terminal or standalone example, and we
do not show it here. This time we assume that all the artefacts are packed into an archive
(hello.jar). This can be done for example by the jar command:

jar cf example03/hello.jar \

 WEB- INF/classes/*.class \

 WEB- INF/classes/*.p

When running the applet from the server we used the following directory layout. The Jeke-
jeke Prolog runtime library (interpreter.jar) needs also to be copied to the server. The only
visible non-archive artefact is the applet HTML page (page.html):

example 03

 +--- hello . jar

 +--- interpreter . jar

 +--- page . html

There are different approaches to deploy a web context to a web server. We find creating a
.war file or plain copying of the directory tree. When the start of the web server was success-
ful the applet HTML page can be invoked from a browser.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 56 of 60

9.4 Servlet Deployment
For the servlet example there are the following additional sources:

¶ Data.java: The Java class for the data holder.

¶ form.jsp: The dynamic HTML page that uses the query interpreter.

¶ web.xml: The web application configuration file.

We have used the following directory layout for the Java sources (Data.java), the JSP HTML
form (form.jsp) and the web application configuration file (web.xml). We also reuse some
artefacts from the previous terminal example, but we do not show them here:

 example01

 example04

 +--- Data .java

 +--- form.jsp

 WEB- INF

 +--- web.xml

The compilation is done similar as for the previous terminal, standalone or applet example,
and we do not show it here. Once again we assume that all the artefacts are packed into an
archive (hello.jar). This can be done for example by the jar command:

jar cf WEB - INF/lib/hello.jar \

 WEB- INF/classes/*.class \

 WEB- INF/classes/*.p

There is no need to compile the JSP HTML form. It will be automatically transformed and
compiled when invoked. The JSP HTML form will be placed on the web server together with
the archives and the web application configuration file (web.xml):

 example04

 +--- form.jsp

 WEB- INF

 +--- lib

 | +--- interpreter.jar

 | +--- hello.jar

 +--- web.xml

There are different approaches to deploy a web context to a web server. We find creating a
.war file or plain copying of the directory tree. When the start of the web server was success-
ful the JSP HTML form can be invoked from a browser.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 57 of 60

9.5 Client Deployment
For the client example there are the following additional sources:

¶ agent.p: The Prolog text of the agent.

¶ Client.java: The Java class for the client frame.

¶ service.jsp: The dynamic service page that uses the query interpreter.

¶ Stub.java: The Java class for the interpreter stub.

We have used the following directory layout for the Java sources (Client.java and Stub.java),
the Prolog text (agent.p) and the JSP service page (service.jsp). We also reuse some arte-
facts from the previous terminal, standalone and servlet example, but we do not show them
here:

 example01

 example02

 example04

 example05

 +--- agent.p

 +--- Client.java

 +--- service.jsp

 +--- Stub.java

The compilation is done similar as for the previous examples, and we do not show it here.
The building of an archive for the Java compiled classes (*.class) and the Prolog texts (*.p) is
also not shown, we again refer to the previous examples.

There will be now two directory layouts for the byte code. One for the client side and one for
the server side. For the client side we used a very similar layout to the one of the standalone
Swing GUI application, so that we can run it from the IDE. We do not show the placement of
the Jekejeke Prolog runtime library (interpreter.jar) which is also required:

 WEB- INF

 +--- classes

 +--- example01

 +--- example02

 +--- example05

 +--- agent .p

 +--- Client .class

 +--- Stub .class

For the server side we used a very similar layout to the one of the servlet application, so that
we could use the same web server. Once again the only visible file element will be the JSP
service page. We do not show the placement of the web context archive (hello.jar) and the
Jekejeke Prolog runtime library (interpreter) which is also required:

 example05

 +--- service .jsp

There are different approaches to deploy a web context to a web server. We find creating a
.war file or plain copying of the directory tree. When the start of the web server was success-
ful the client side Swing GUI can be started to access the service on the server.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 58 of 60

9.6 Database Deployment
For the database example there are the following additional sources:

¶ Database.java: The Java class for the database frame.

¶ driver.p: The Prolog text of the driver.

¶ insert.sql: The SQL code for the database content.

¶ schema.sql: The SQL code for the database schema.

¶ StatementAPI.java: The Java class for the Prolog database API.

We have used the following directory layout for the Java sources (Database.java and State-
mentAPI.java) and the Prolog text (driver.p). We provide them together with the SQL scripts.
We also reuse some artefacts from the previous terminal and standalone example, but we do
not show them here:

 example01

 example02

 example06

 +--- Database.java

 +--- driver.p

 +--- insert.sql

 +--- schema.sql

 +--- StatementAPI.java

The example accesses an SQL database management system via JDBC. The JDBC con-
nection expects a database inside the database management system. The provided SQL
scripts can be used to create the schema (schema.sql) of this database and to populate the
database (insert.sql) with table content:

The compilation is done similar as for the previous examples, and we do not show it here.
There will be one directory layout for the resulting Java byte code. We use this directory lay-
out for the client side, which is very similar to the one of the standalone Swing GUI applica-
tion, so that we can run it from the IDE.

 WEB- INF

 +--- classes

 +--- example01

 +--- example02

 +--- example06

 +--- Database .class

 +--- driver .p

 +--- StatementAPI.class

We do not show the placement of the Jekejeke Prolog runtime library (interpreter.jar) into the
class path, which is also required. A JDBC driver of the used SQL database management
system needs to be put as well into the class path. The format and parameters of the JDBC
connection URI in the code depends on these choices.

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 59 of 60

9.7 Mobile Deployment
For the mobile example there are the following sources:

¶ Adapter.java: The Java class for the list adapter.

¶ Results.java: The Java class for the list adapter.

¶ Query.java: The Java class for the query interpreter.

¶ Criterias.java: The Java class for the criterias activity.

¶ table.p: The Prolog text of the table.

¶ deployandroid.png: The icon of the mobile application.

¶ strings.xml: The name of the mobile application.

¶ AndroidManifest.xml: The mobile application figuration file.

During compilation we cannot use the Android package of the Jekejeke Prolog runtime li-
brary (interpreter.apk) since it contains Dalvik code and not Java byte code. Instead we have
to use the embeddable library of the Jekejeke Prolog runtime library (interpreter.zip) with the
Java byte code, which can be downloaded from our web site (www.jekejeke.ch).

We have used the following directory layout for the Java sources (Adapter.java, Results.java,
Query.java and Criterias.java), the Prolog text (table.p), the Android resources (de-
ployandroid.png, strings.xml and AndroidManifest.xml) and the Jekejeke Prolog runtime li-
brary (interpreter.zip) with the extension renamed during compilation:

 src

 +--- example07

 +--- Adapter.java

 +--- Criterias.java

 +--- Query.java

 +--- Results.java

 +--- table .p

 lib

 +--- interpreter. jar

 r es

 +--- drawable

 | +--- deployandroid.png

 +--- values

 +--- strings.xml

 AndroidManifest.xml

We have used the interactive tool chain from the Android Studio IDE. The tool chain will also
generate a directory gen with some derived information. The tool chain typically will first gen-
erate Java byte code, then Dalvik code and finally an APK file for the mobile application. The
intermediate and final results might use the following directory layout:

 classes

 +--- example07

 +--- Adapter.class

 +--- Criterias.class

 +--- Query.class

 +--- Results.java

 +--- table.p

 +--- deployandroid.apk

 +--- deployandroid.unaligned .apk

Jan Burse Deployment Methods XLOG Technologies GmbH

September 16, 2018 jekejeke_deploy_meth_2018_08_27_e.docx Page 60 of 60

Pictures

Picture 1: Terminal Application Flow .. 8
Picture 2: IntelliJ Name Query ..12
Picture 3: Standalone Application Search Flow ..13
Picture 4: Search Button with Unicode Criteria ...20
Picture 5: Debug Button with Unicode Criteria ..21
Picture 6: Applet with Search Results ...24
Picture 7: Servlet Application Flow ...26
Picture 8: HTML Page Unicode Search ..30
Picture 9: Client Application Search Flow ...33
Picture 10: Service Page Unicode Search ..37
Picture 11: Client Frame Unicode Search ...38
Picture 12: Database Frame Unicode Search ...43
Picture 13: Mobile Application Search Flow ..44
Picture 14: Applications Screen ..50
Picture 15: Search Criterias Activity ..50
Picture 16: Search Results Activity ...51

Tables

Es konnten keine Einträge für ein Abbildungsverzeichnis gefunden werden.

References

[1]

JDK Tools and Utilities, Oracle America, Inc., 2010.

[2] Flanagan, D.: Java Foundation Classes in a Nutshell, O’Reilly Media, 1999.

[3] Java Servlet Specification, Version 3.0, Oracle America, Inc., Maintenance Release,
February 6, 2011.

[4] JavaServer Pages™ Specification, Version 2.2, Sun Microsystems, Inc., Mainte-
nance Release, December 10, 2009.

[5] Baroudi, C., Hurwitz, J. and Bloor, R.: Service-Oriented Architecture For Dummies,
Wiley & Sons, 2006.

	1 Introduction
	2 Terminal Deployment
	2.1 Table Data
	2.2 Execution Flow
	2.3 Query Interpreter
	2.4 Terminal Main Class
	2.5 Example Uses

	3 Standalone Deployment
	3.1 Execution Flow
	3.2 User Interface Pane
	3.3 Progress Bar
	3.4 Standalone Frame
	3.5 Example Uses

	4 Applet Deployment
	4.1 Applet Component
	4.2 HTML Page
	4.3 Example Uses

	5 Servlet Deployment
	5.1 Execution Flow
	5.2 Data Holder
	5.3 HTML Page
	5.4 Web XML
	5.5 Example Uses

	6 Client Deployment
	6.1 Prolog Agent
	6.2 Execution Flow
	6.3 Service Page
	6.4 Interpreter Stub
	6.5 Client Frame
	6.6 Example Uses

	7 Database Deployment
	7.1 Prolog Driver
	7.2 Statement API
	7.3 Database Frame
	7.4 Example Uses

	8 Mobile Deployment
	8.1 Execution Flow
	8.2 Activity Screens
	8.3 Progress Bar
	8.4 Android Manifest
	8.5 Example Uses

	9 Example Artefacts
	9.1 Terminal Deployment
	9.2 Standalone Deployment
	9.3 Applet Deployment
	9.4 Servlet Deployment
	9.5 Client Deployment
	9.6 Database Deployment
	9.7 Mobile Deployment

	Pictures
	Tables
	References

